

CMS Data Transfer Challenges

LHCOPN-LHCONE meeting Michigan, Sept 15/16th, 2014

Azher Mughal Caltech

Caltech Tier2 Center

Data Center remodeled in late 2013

- Servers are spread across 3 Data Centers within campus
- Total Nodes including storage servers : 300
- CPU Cores: 4500
- Storage Space :
 - Raw: 3 PetaBytes
 - Useable : 1.5 PetaBytes
- Hadoop Storage Replication Factor : 50%
- GridFTPs are gateway to the rest of the CMS grid traffic

Data Center Connectivity

- 100G uplink to CENIC (NSF CC-NIE award) with 10GE as a backup.
- 40G Inter building connectivity.
- Vendor neutral, switching hardware from Brocade, Dell and cisco.
- Active Ports:
 - 8 x 40GE
 - ~40 x 10GE ports
 - ~500 x 1GE ports
- Core switches support OpenFlow
 1.0 (OF 1.3 by 4th Qtr 2014).

- OSCARS / OESS Controller in production since 2009. Peering with Internet2.
- DYNES connected storage node.
- NSI ready using OSCARS NSI Bridge.

100G LHCONE Connectivity, IP Peerings

- CC-NIE award helped purchase of 100G equipment
- Tier2 connected with Internet2LHCONE VRF since April 2014
- In case of link failure, Primary 100G
 path fails over to the 10G link
- Direct IP peering with UFL over AL2S and FLR
- Ongoing p-t-p performance analysis experiments with Nebraska through Internet2 Advanced Layer2 Services (AL2S)

perfSONAR LHCONE Tests

- Participating in US CMS Tier2 and LHCONE perfSONAR mesh tests.
- Separate perfSONAR instances for OWAMP (1G) and BWCTL (10G)
- RTT plays major factor in bandwidth throughput (single stream).

[root@perfsonar ~]# ping perfsonar-de-kit.gridka.de 64 bytes from perfsonar-de-kit.gridka.de (192.108.47.6): icmp_seq=1 ttl=53 time=172 ms

[root@perfsonar ~]# ping ps-bandwidth.lhcmon.triumf.ca (206.12.9.1): icmp_seq=2 ttl=58 time=29.8 ms

CMS Software Components Primer

PhEDEx

 Book keeping for CMS Data Sets. Knows the End points and manages high level aspects of the transfers (e.g. file router).

FTS

 Negotiates the transfers among end sites/points and initiates transfers through the GridFTP servers.

SRM

 Selects the appropriate GridFTP Server (mostly round-robin).

GridFTP

 Actual workhorse or grid middleware for the transfers between end sites. Or, an interface between the storage element and the wide area network.

 US CMS mandated a 20Gbps disk-to-disk test rates using PhEDEx load tests.

(https://twiki.cern.ch/twiki/bin/view/CMSPublic/USCMSTier2Upgrades)

- The software stack is not ready as an *out of the box* to achieve higher throughputs among sites. Requires lot of tunings.
- Benchmarking the individual GridFTP servers to understand the limits.
- GridFTP uses 3 different file checksum algorithms for each file transfer.
 Consumes lot of CPU cycles.
- During the first round of tests, FTS (the older version) used 50 transfers in parallel. This limit was removed in the August release.

- 10 Gbps gridFTPs behave very well
 - up to 88% capacity steady
 - Peaking at 96% capacity
 - Optimal CPU/Memory consumption

- Increases transfers observed during the LHCONE ANA integration.
- Manual ramp up was just a test because remote PhEDEx sites were not subscribing enough transfers to FTS links (e.g. Caltech - CNAF)

Tier2 traffic flows, Peaks of 43G over AL2S with 20G to just CNAF.

Testing High Speed Transfers

Logical Layout from CERN (USLHCNet) to Caltech (Pasadena)

Testing High Speed Transfers

Server and Operating System Specifications

Testing High Speed Transfers

Data writing over the SSD Drives, Destination server in Caltech

Facts:

- Despite of all the tunnings, Due to higher RTT, single TCP stream performed low at 360Mbps.
 Approx. 200 streams were used.
- AL2S is shared infrastructure.
 During these transfers, LA node showed 97.03Gbps.
- CPU is the bottleneck when using TCP at this rate and number of flows (network and I/O processes compete with each other).

Conclusions / Moving Forward

- It is very important for the LHC experiments to be aware of the impact of their large data flows on the R&E networks, both in the US and Europe and across the Atlantic. With modern day off the shelf equipment, 100GE paths can be easily overloaded.
- Caltech is able to achieve the US CMS Tier2 milestones with peaks reaching to 43Gbps (CC-NIE 100G, LHCONE, ANA).
- We are looking forward on how to integrate OLiMPS multi-path controller with Internet2 flow space firewall (p-t-p services):
 - to create either parallel paths to same destination (avoid backbone congestion) or
 - individual paths to destinations by looking at load on the WAN.
- Benchmarking next generation CPUs and memory, keeping the software stack tuned and knowing its limitations under different set of application requirements.
- SDN Multipath demonstrations over the WAN and on the show floor will be showcased during the Supercomputing Conference 2014 in Louisiana.

Time for Questions!

