
Pedro Arce GAMOS G4WS’06 October 12th, 2006 1

GAMOS
a user-friendly and flexible framework for

GEANT4 medical applications

Pedro Arce Dubois
Pedro Rato Mendes

CIEMAT, Madrid

11th GEANT4 Workshop
LIP – Lisbon, 10-14 October 2006

Pedro Arce GAMOS G4WS’06 October 12th, 2006 2

Introduction
GAMOS objectives
plug-in’s

GAMOS components
Geometry
Generator
Physics
User actions
Sensitive detector and
hits
Histograms
Visualization

Index
Utilities

Parameter management
Verbosity management
Input file management

Examples
PET
Histograms

Summary

Pedro Arce GAMOS G4WS’06 October 12th, 2006 3

GAMOS is a framework designed to allow the user to
Simulate a project with a minimal knowledge of GEANT4 and no
need of C++
Easily add new functionality and combine it with the existing
functionality in GAMOS

We cannot pretend to cover all the functionality, so we should let the
advanced user to write C++ code

Load it dynamically

Easily transform it into a user command

⇒ It must be complete, flexible, easy to extend and easy
to use

GAMOS
(Geant4-based Architecture for Medicine-Oriented Simulations)

plug-in’s

Pedro Arce GAMOS G4WS’06 October 12th, 2006 4

COMPLETE:

Provide all the functionality for someone who wants to
simulate a medical physics project

It is indeed impossible to cover all what all users may need
⇒ It must be extendible

It will keep growing with time…

GAMOS
(Geant4-based Architecture for Medicine-Oriented Simulations)

Pedro Arce GAMOS G4WS’06 October 12th, 2006 5

FLEXIBLE:

Users should be able to control everything through user
commands (= no recompiling)
Avoid hardcoding

Do not force users to call its detector “CRYSTAL”, or to have three
levels of ancestors, or…
Do not force users to use your SD class, or your histogram format, or…

Different modules can be combined at users will
Change geometry but not the histograms
Change sensitive detector type but do not toch digitization

MODULAR: Each class, each module makes one and only one
thing, clearly defined, but as general as possible

Keeping an eye on performance

GAMOS
(Geant4-based Architecture for Medicine-Oriented Simulations)

Pedro Arce GAMOS G4WS’06 October 12th, 2006 6

EASY TO EXTEND:

Easy to add any new functionality

Mix seamlessy existing functionality together with new one

Add new modules without affecting others

Based on “plug-in’s”
Convert new C++ into user commands

GAMOS
(Geant4-based Architecture for Medicine-Oriented Simulations)

Pedro Arce GAMOS G4WS’06 October 12th, 2006 7

EASY TO USE:

Almost everything can be done through user commands

A good design, applying software engineering techniques

Well documented

GAMOS
(Geant4-based Architecture for Medicine-Oriented Simulations)

Pedro Arce GAMOS G4WS’06 October 12th, 2006 8

The main GAMOS program has no predefined components
At run-time user selects which components to load through user
commands

User has full freedom in choosing components

User can define a component not foreseen by GAMOS
Write C++ and use it through an user command
Mix it with any other component

For the plug-in's implementation in GAMOS it has been chosen the
CERN library: SEAL

GAMOS plug-in´s

Pedro Arce GAMOS G4WS’06 October 12th, 2006 9

Three different ways to define:

C++ code:
The usual GEANT4 way
Add one line to transform your class in a plug-in

DEFINE_GAMOSGEOMETRY (MyGeometry);
so that you can select it in your input macro

/gamos/geometry MyGeometry

Define it in ASCII files
The easiest way to define a geometry
Based on simple tags
Same order of parameters as corresponding GEANT4 classes

Using one of the GAMOS examples
Simple PET can be defined through an 8-parameters file (n_crystals,
crystal_x/y/z, radius, …)
...

Geometry

Pedro Arce GAMOS G4WS’06 October 12th, 2006 10

Based on simple tags, with same order of parameters as corresponding GEANT4
classes

:ELEM Hydrogen H 1. 1.
:VOLU yoke :TUBS Iron 3 62.*cm 820. 1.27*m
:PLACE yoke 1 expHall R0 0.0 0.0 370.*cm

MATERIALS:
Isotopes
Elements
Simple materials
Material mixtures by weight, volume or number of atoms

SOLIDS:
All “CSG” and “specific” solids
Boolean solids

ROTATION MATRICES:
3 rotation angles around X,Y,Z
6 theta and phi angles of X,Y,Z axis
9 matrix values

Geometry from ASCII files

Pedro Arce GAMOS G4WS’06 October 12th, 2006 11

PLACEMENTS:
Simple placements
Divisions
Replicas
Parameterisations

Linear or circular
For complicated parameterisations example of how to mix the C++ parameterisation
with the ASCII geometry file

Colour
Visualisation ON/OFF

PARAMETERS:
Can be defined to use them later

:P InnerR 12.
:VOLU yoke :TUBS Iron 3 $InnerR 820. 1270.

Arithmetic expressions
:VOLU yoke :TUBS Iron 3 sin($ANGX)*2+4 820. 1270.

Geometry from ASCII files

Pedro Arce GAMOS G4WS’06 October 12th, 2006 12

UNITS:
Default units for each value
Each valule can be overridden by user

Include other files
#include mygeom2.txt.

User can extend it: add new tags and process it without touching base code

Install and use it as another GEANT4 library
G4VPhysicalVolume* MyDetectorConstruction::Construct(){

G4tgbVolumeMgr* volmgr = G4tgbVolumeMgr::GetInstance();
volmgr->AddTextFile(filename); // SEVERAL FILES CAN BE ADDED
return = volmgr->ReadAndConstructDetector();

GEANT4 in memory geometry -> ASCII files

HISTORY:
In use to build GEANT4 geometries since 9 years ago

An evolving code…
Built CMS and HARP experiments

Geometry from ASCII files

Pedro Arce GAMOS G4WS’06 October 12th, 2006 13

Utilities that can be used through a command or from any part of
the user code

Material factory
GAMOS reads material list from a text file
A G4Material can be built at user request

G4Material* bgo = GmMaterialMgr::GetInstance()

->GetG4Material(“BGO”);

Printing list of
Materials
Sólids
Logical volumes
Physical volumes
Touchables

Find a volume by name (LV, PV or touchable)
Delete a volume (and daugthers) by name

Some geometry utilities

Pedro Arce GAMOS G4WS’06 October 12th, 2006 14

Generator
C++ code

• The usual GEANT4 way
• Add one line to transform your class in a plug-in
DEFINE_GAMOSGENERATOR(MyGenerator);
so that you can select it in your input macro
/gamos/generator MyGenerator

GAMOS generator

• Combine any number of single particles or isotopes decaying to e+, e-, γ

• For each particle or isotope user may select by user commands a combination

of time, energy, position and direction distributions

Or create its own and select it by a user command (transforming it into a

plug-in)

Pedro Arce GAMOS G4WS’06 October 12th, 2006 15

Physics
C++ code

• The usual GEANT4 way
• Add one line to transform your class in a plug-in
DEFINE_GAMOSPHYSICSLIST (MyPhysicsList);

so that you can select it in your input macro
/gamos/physicsList MyPhysicsList

• GAMOS physics list

• Based on hadrotherapy advanced example
• User can combine different physics lists for photons, electrons,
positrons, muons, protons and ions

• Dummy one for visualisation

Pedro Arce GAMOS G4WS’06 October 12th, 2006 16

User actions

User can have as many user actions of any type as he/she wants

User can activate a user action by a user command
• GAMOS user actions or her/his own

• Just adding a line after the user action to transform it into a plug-in

DEFINE_GAMOSUSERACTION(MyUserAction);
/gasos/userAction MyUserAction

Pedro Arce GAMOS G4WS’06 October 12th, 2006 17

Sensitive Detectors

• To produce hits in GEANT4 a user has to:
• Define a class inheriting from G4VSensitiveDetector
• Associate it to a G4LogicalVolume
• Create hits in the ProcessHits method
• Clean the hits at EndOfEvent

• In GAMOS you can do all this with a user command
/gamos/assocSD2LogVol SD_CLASS SD_TYPE LOGVOL_NAME

• SD_CLASS: Two classes of SD currently in GAMOS
• Simple: each volume corresponds to an SD ⇒ a hit
• VirtuallySegmented: a volume is segmented and each subvolume builds a different
hit

• SD_TYPE: an identifier string, so that different SD/hits can have different
treatment

• User can create his/her own SD class

Pedro Arce GAMOS G4WS’06 October 12th, 2006 18

Hits
• A GAMOS hit has the following information

• G4int theDetUnitID; ID of the sensitive volume copy
• G4int theEventID;

• G4double theEnergy;

• G4double theTimeMin; time of the first E deposit
• G4double theTimeMax; time of the last E deposit
• G4ThreeVector thePosition;

• std::set$<$G4int$>$ theTrackIDs; list of all tracks that contributed
• std::set$<$G4int$>$ thePrimaryTrackIDs; list of all ‘primary´tracks that
contributed
• std::vector$<$GamosEDepo*$>$ theEDepos; list of all deposited energies
• G4String theSDType;

• User can create his/her own hit class

Pedro Arce GAMOS G4WS’06 October 12th, 2006 19

Digitizer
Digitization is very detector specific it is not possible to provide
a general solution

• GAMOS just provide a simple digitizer
• 1 hit 1 digit
• Merge hits close enough

• Same set of sensitive volumes
• Closer than a given distance

• … and a basic structure
• Hits compatible in time (spanning various events)
• Trigger
• Pulse simulation
• Sampling
• Noise

Pedro Arce GAMOS G4WS’06 October 12th, 2006 20

Some detector effects
Measuring time
- A detector is not able to separate signals from different evetns if
they come close in time

Dead time
- When a detector is triggered, this detector (or even the whole
group it belongs to) is not able to take data during some time

• Both can be set by the user in the input macro
• A different time for each SD_TYPE

/gamos/setParam SD:Hits:MeasuringTime:Calor 10. ns

Pedro Arce GAMOS G4WS’06 October 12th, 2006 21

Histograms
Same code to create and fill histograms independent of the format

• GAMOS takes care of writing the file in the chosen format at the end of job

• Originally based on CERN package PI
But PI is not supported any more

• Currently own format, output in ROOT

GmAnalysisMgr keeps a list of histograms so that they can be accessed
from any part of the code, by number or name
GmHitsEventMgr::GetInstance(“pet”)->GetHisto1(1234)->Fill(ener);

GmHitsEventMgr::GetInstance(“pet”)->GetHisto1(“CalorSD: hits

energy”)->Fill(ener);

There can be several files, each one with its own histograms
• When creating an histogram, user chooses file name

Pedro Arce GAMOS G4WS’06 October 12th, 2006 22

Parameter management

GmParameterMgr helps the user to define and use a parameter
• A parameter is defined in the input macro
/gamos/setParam SD:Hits:EnergyResolution 0.1

• User can get its value in any part of the code
float enerResol = GmParameterMgr::GetInstance()

->GetNumericValue(“SD:Hits:EnergyResolution”,0.);

Parameters can be number or strings

Pedro Arce GAMOS G4WS’06 October 12th, 2006 23

Verbosity management

User can control the verbosity of the different GAMOS
components independently

/gamos/verbosity GamosGenerVerb 3

/gamos/verbosity GamosSDVerb 2

Can be used in new code trivially
G4cout << AnaVerb(3) << “creating my histograms” << G4endl;

User can easily define its own verbosity type controlled by a user
command
• 5 + 1 levels of verbosity

• SilentVerb = -1
• ErrorVerb = 0 (default)
• WarningVerb = 1
• InfoVerb = 2
• DebugVerb = 3
• TestVerb = 4

Pedro Arce GAMOS G4WS’06 October 12th, 2006 24

Verbosity management (II)
TrackingVerbose by event and track number:

• It can be selected for which events and track numbers the
“/tracking/verbose” command becomes active
/gamos/userAction TrackingVerboseUA

/gamos/setParam TrackingVerbose:EventMin 1000

/gamos/setParam TrackingVerbose:EventMax 1010

/gamos/setParam TrackingVerbose:TrackMin 10

/gamos/setParam TrackingVerbose:TrackMax 20

Event counting:
• Prints the number of simulated events with the number of tracks
in the last event and accumulated (useful when you are waiting for
long times without nothing happening…)
/gamos/userAction TrackCountUA

/gamos/setParam TrackCount:EachNEvent 1000

Pedro Arce GAMOS G4WS’06 October 12th, 2006 25

Input file management

Some algorithms need to read in a data file

In GAMOS the file does not have to be on the current directory
• Easier to use the same file in several applications

GAMOS_SEARCH_PATH variable contains the list of directories
where the file is looked for

• User can add more directories

Pedro Arce GAMOS G4WS’06 October 12th, 2006 26

Applications and examples
Medical physics applications:

PET
Radiotherapy on progress

Histogram examples:
As general as possible so that they can be reused

Documentation examples:
A dummy one and a more complicated one

/gamos/geometry GmGeomtryFromText
/gamos/physicsList GmEMLowEnPhysics
/gamos/generator GmGenerator
/gamos/generator/addIsotopeSource F18_1 F18 1.E3 becquerel
/run/initialize
/run/beamOn 10

Explained in detail

Pedro Arce GAMOS G4WS’06 October 12th, 2006 27

Summary
GAMOS is a plug-in based, and user-friendly GEANT4-based

framework
allows the user to do GEANT4 simulation through user commands
plug-in’s allow to extend functionality by writing C++ classes that

can then be used through user commands

We have tried in its design to make a framework
Easy to use, flexible, extendible and complete

GAMOS core is application independent
Several medical applications are being built on top of GAMOS

core

