Geant4 Simulation of the Pierre Auger Fluorescence Detector

Pedro Assis ${ }^{1}$, Patrícia Gonçalves ${ }^{1}$, Libor Nozka², Mário Pimenta ${ }^{1}$, Bernardo Tomé ${ }^{1}$

1- Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa, Portugal
2 - Institute of Physics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic

Ultra High Energy Cosmic Rays (UHECR)

UHECR detection

Extensive Air Showers (EAS)

Fluorescence from air N_{2} molecules isotropic emission along the shower

Light detection from space

Cherenkov light
collimated with the shower

Direct detection of shower particles
Scintillators, Cherenkov radiators (e.g. water),...

The Southern Pierre Auger Observatory

- A giant hybrid detector in Argentír

PIERRE AUGER OBSERVATORY

Corrector ring

Ring shaped lens to increase the telescope aperture ($\sim 2 x$);
No significant degradation of optics performance.
Toroidal profile

Corrector ring in Geant4

- G4Polycone;
- Discretization of ring profile:

Equidistant slices along $Z \quad ; \quad R_{i} v s Z_{i}$ from ring profile equation.

N - to be optimized...

Corrector ring in Geant4

Mirror

- $3.5 \times 3.5 \mathrm{~m}^{2}$ spherical mirror;
- 3.4 m curvature radius;
- Made of square or hexagonal mirror segments (MS) with spherical curvature;
- Hexagonal MS mirror implemented in the simulation.

4 different MS shapes to fit the mirror curvature:

Each mirror is made of 60 mirror segments.

Mirror segments (MS) in Geant4

1) Union of G4Trd solids ;
2) Intersection of resulting boolean solid with a G4Sphere.
(Rmin = Radius of curvature; Rmax = Rmin + thickness)

The four MS types are described in the simulation.

- MS parameters (curvature, reflectivity, distance to camera) are read for each fluorescence telescope;
- Access to a mirror segment DB is also possible.

Assembled mirror

Camera

Camera frame

- Spherical focal surface;
- Hexagonal PMT's;
- Reflecting light guides ("Mercedes") to maximize light collection.

6 "Mercedes" light collectors

Mercedes light collectors in Geant4

Union of 3 G4Polyhedra solids

Assembled camera

PMTs described as hexagonal volumes (shown in red) and defined as sensitive volumes.

Assembled telescope

Seeing light...

Some very preliminary results

Mirror "X-ray"

Uniform illumination of the mirror $\left(\theta=0^{\circ}\right)$; Photon positions detected behind the mirror.
fOpticalHits.PosY:fOpticalHits.PosZ

Camera "X-ray"

Uniform illumination of the camera ($\theta=0^{\circ}$);
Average photon distribution over the PMT surface:

Effect of non-uniformities of photocathodes can be introduced in the simulation.

PSF vs theta - an example

Direction Scans

Th=00; Phi= 0°

Direction Scans

Th=15 ${ }^{\circ} ;$ Phi $=0^{\circ}$

Direction Scans

Th=30 ${ }^{\circ} ; \mathrm{Phi}=0^{\circ}$

Position Scans

Spots at

Photons direction:
Th=00; Phi=0 ${ }^{\circ}$

Position Scans

Spots at Phi=0ㅇ́ $90^{\circ} ; 180^{\circ} ; 270^{\circ}$

Photons direction:
Th $=0^{\circ}$; Phi $=0^{\circ}$

Position Scans

Spots at

Photons direction:
Th=150; Phi=0́․

Position Scans

Spots at
Phi $=0^{\circ} ; 90^{\circ} ; 180^{\circ} ; 270^{\circ}$

Photons direction:
Th=0 ${ }^{\circ}$; Phi $=0^{\circ}$

A SHOWER... 1000 Photons

A SHOWER... 100 Photons

A SHOWER... 100 Photons

A SHOWER... 100 Photons

A SHOWER... 1000 Photons

Summary

\checkmark A full Geant4-based simulation of the Auger fluorescence detectors was developed;
\checkmark Integration in the Auger simulation chain is being carried;
\checkmark Detailed comparisons with the ray-tracing software will be performed.

Optics of Auger Fluorescence

\# schmidt optics telescope.Detectors


```
Mirror:
\(\mathrm{f} / 1\) spherical mirror ;
\(3.5 \mathrm{~m} \times 3.5 \mathrm{~m}\);
\(\mathrm{PSF}=0.5^{\circ}\).
```

Camera:
440 hexagonal pixels/PMT's;
$1.5^{\circ} \times 1.5^{0}$ pixel FOV;
Spherical focal surface.

- Full Geant4 simulation will be implemented at LIP.
- Other LIP activities:
- Reconstruction and analysis of the Fluorescence Detectors data;

