
Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

Application of Geant4 Python InterfaceApplication of Geant4 Python Interface

Koichi Murakami

KEK / CRC

Let's start with " >>> import Geant4"
A Geant4-Python Bridge

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

2

PythonPython

Shell Environment
front end shell

script language

Programming Language
much easier than C++

supporting Object-Oriented programming

providing multi-language binding (C-API)

dynamic binding
» modularization of software components

» many third-party modules (just plug-in)

» software component bus

Runtime Performance
slower than compiled codes, but not so slow.

Performance can be tunable between speed and interactivity.

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

3

Motivation of Geant4Motivation of Geant4--Python BridgePython Bridge

Improving functionalities of current Geant4 UI
more powerful scripting environment

» driving Geant4 on a Python front end
» flow control, variables, arithmetic operation

flexibility in the configuration of user applications
Modularization of user classes with dynamic loading scheme

» DetectorConstruction, PhysicsList, PrimaryGeneratorAction,
UserAction-s

» It helps avoid code duplication.
quick prototyping and testing

Software component bus
interconnectivity with many Python external modules,

» analysis tools (ROOT/AIDA), plotting tools (SciPy/matplotlib)
middleware for application developers

» GUI applications/web applications
» much quicker development cycle

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

4

Geometry-A

ParticleGun

ExN03Geometry

MedicalBeam

ParticleBeam

PhysicsList-EMstd

PhysicsList-A

PhysicsList-EmLowE

ExN02Geometry
Analysis-A

Analysis-B

Analysis-C

User Application

Geometry modules PGA modules
PL modules

Analysis
modules

import import
import

import

Modular Approach and Software Component BusModular Approach and Software Component Bus

Python Bus

Analysis
•ROOT
•AIDA GUI

•QT
•Wx Web App.

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

5

Geant4PyGeant4Py

“Geant4Py” is included in the Geant4 distribution since the
8.1 release.

please check the directory “environments/g4py/”

Linux and MacOSX(10.4+XCode 2.3/4) are currently supported.

A G4-Python bridge as “Natural Pythonization” of Geant4
start with just importing the module;

» >>> import Geant4

not specific to particular applications

same class names and their methods

keeping compatibility with the current UI scheme

minimal dependencies of external packages
» only depending on Boost-Python C++ Library, which is a common,

well-established and freely available library.

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

6

Currently, over 100 classes over different categories are exposed to Python.
Classes for Geant4 managers

» G4RunManager, G4EventManager, …
UI classes

» G4UImanager, G4UIterminal, G4UIcommand, …
Utility classes

» G4String, G4ThreeVector, G4RotationMatrix, ...
Classes of base classes of user actions

» G4UserDetetorConstruction, G4UserPhysicsList,
» G4UserXXXAction

― PrimaryGenerator, Run, Event, Stepping,...
» can be inherited in Python side

Classes having information to be analyzed
» G4Step, G4Track, G4StepPoint, G4ParticleDefinition, ...

Classes for construction user inputs
» G4ParticleGun, G4Box, G4PVPlacement, ...

NOT all methods are exposed.
Only safe methods are exposed.

» Getting internal information are exposed.
» Some setter methods can easily break simulation results.

What is Exposed to PythonWhat is Exposed to Python

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

7

ExtensibilityExtensibility

Your own classes can be exposed, and create your own
modules in the Boost-Python manner.

Once an abstract class is exposed to Python, you can
implement/override its derived class in the Python side.

BOOST_PYTHON_MODULE(mymodule){
class_<MyApplication>("MyApplication", "my application")

.def("Configure", &MyApplication::Configure)
;

class MyRunAction(G4UserRunAction):
“””My Run Action”””
def BeginOfRunAction(self, run):

print "*** #event to be processed (BRA)=“, \
run.GetNumberOfEventToBeProcessed()

def EndOfRunAction(self, run):
print "*** run end run(ERA)=", run.GetRunID()

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

8

Compatibility with G4UImanagerCompatibility with G4UImanager

Geant4Py provides a bridge to G4UImanager.
Keeping compatibility with current usability

UI Commands
gApplyUICommand(“/xxx/xxx”) allows to execute any G4UI
commands.
Current values can be obtained by
gGetCurrentValues(“/xxx/xxx”).

Existing G4 macro files can be reused.
gControlExecute(“macro_file_name”)

Front end shell can be activated from Python
gStartUISession() starts G4UIsession.

» g4py(Idle): // invoke a G4UI session
» when exit the session, go back to the Python front end

Python variables/methods starting “g” are global.

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

9

Predefined ModulesPredefined Modules

We will also provide site-module package as predefined
components for easy-to-use as well as good examples.

Material
» NIST materials via G4NistManager

Geometry
» “exN03” geometry as pre-defined geometry
» “EZgeometry”

― provides functionalities for easy geometry setup

Physics List
» pre-defined physics lists
» easy access to cross sections, stopping powers, ... via G4EmCalculator

Primary Generator Action
» particle gun / particle beam

Sensitive Detector
» calorimeter type / tracker type

Scorer
» MC particle/vertex

They can be used just by importing modules.

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

10

Yet Another Way to Create GeometryYet Another Way to Create Geometry

“EZgeom” module provides an easy way to create simple
users geometries;

structure of geometry construction is hidden;
» Solid/Logical Volume/World Volume

» “EZvolume” is the only gateway to a physical volume from users side.

automatic creation of the world volume
» volume size should be cared.

creating CSG-solid volumes (Box, Tube, Sphere, …)

changing volume materials

creating nested volumes
» placing a volume in the world by default

creating replicas / voxelizing BOX volumes

setting detector sensitivities

setting visualization attributes

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

11

Example of using Example of using EZgeomEZgeom packagepackage
import NISTmaterials
from EZsim import EZgeom
from EZsim.EZgeom import G4EzVolume

NISTmaterials.Construct()
set DetectorConstruction to the RunManager
EZgeom.Construct()

reset world material
air= gNistManager.FindOrBuildMaterial("G4_AIR")
EZgeom.SetWorldMaterial(air)

dummy box
detector_box=G4EzVolume("DetectorBox")
detector_box.CreateBoxVolume(air, 20.*cm, 20.*cm, 40.*cm)
detector_box_pv=
detector_box.PlaceIt(G4ThreeVector(0.,0.,20.*cm))

calorimeter placed inside the box
cal= G4EzVolume("Calorimeter")
nai= gNistManager.FindOrBuildMaterial("G4_SODIUM_IODIDE")
cal.CreateBoxVolume(nai, 5.*cm, 5.*cm, 30.*cm)
dd= 5.*cm
for ical in range(-1, 2):

calPos= G4ThreeVector(dd*ical, 0., 0.)
cal.PlaceIt(calPos, ical+1, detector_box)

0 21

less than 20 lines!!

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

12

A Medical Application ExampleA Medical Application Example

Several examples of using Python interface are/will be presented.

An example of “water phantom dosimetry”
This demo program shows that a Geant4 application well coworks with
ROOT on the Python front end.

You can look features of;

dose calculation in a water phantom

Python implementation of sensitive detector

Python overloading of user actions

on-line histogramming with ROOT

visualization

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

13

PythonizationPythonization LevelLevel

Various level of pythonized application can be
realized.

It is completely up to users!

Optimized point depends on what you want to do in
Python.

There are two metrics;
Execution Speed

» wrap out current existing C++ components, and configure them

» no performance loss in case of object controller

Interactivity
» more scripting in interactive analysis/rapid prototyping

» pay performance penalty to interpretation in stepping actions.

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

14

Applications of Applications of PythonizationPythonization

Execution Speed

Interactivity/
Pythonization

Productions changing conditions
- physics validation/verification

Coworking with other software components
- interactive analysis

Fully scripting
- rapid prototyping
- educational uses

modularized “compiled” components.
- detector construction
- physics list
- user actions

, and handling components by scripting

compiled modules and scripting user actions
- filling histograms

using “predefined” module and scripting

Performance can be tunable between speed and interactivity.

“radiotherapy simulation for
different configurations of different facilities”

“web application:
Users can execute server
applications via web
browsers”

“online histogramming with ROOT”

“GUI control panel for educational uses:
Various parameters (detector parameters,
initial particles, processes, etc) can be
changed on GUI”“plotting photon cross sections”

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

15

SummarySummary

A Python interface of Geant4 (Geant4Py) has been well
designed and Geant4Py is now included in the latest release,
8.1.

check the “environments/g4py/” directory

Python as a powerful scripting language
much better interactivity

» easy and flex configuration
» rapid prototyping

Python as “Software Component Bus”
modularization of Geant4 application
natural support for dynamic loading scheme
interconnectivity with various kind of software components.

» histogramming with ROOT

These applications show the flexibility and usefulness of
dynamic configuration of user applications using Python.

