

Validation/Verification Activities in Geant4

11th Geant4 Collaboration Workshop and Users Conference at LIP - Lisboa SLAC/SCCS Koi, Tatsumi

Outline

- Hadron Validation
 - From low energy to high energy
 - CHIPS
 - Low Energy Neutron Transportation
 - Ions
- EM Validation
 - Standard
 - Low Energy
- Validation of Use Cases
 - Space Applications
 - Medical Applications
- Other information

Precompound model

- This model handles lowest energy (below 170 MeV) hadron interactions
- In following plots the Geant4 precompound model coupled with evaporation model to handle low energy de-excitation of nucleus
- Precompound is exciton model

Neutron Production Cross Section

Intermediate energies (170 MeV < E < 3.0 GeV)

Binary Cascade Bertini Cascade and LEP

Verification Suite for the Cascade Energy Region

- We have developed since 2002 as test30
- Neutron production by p, d, α , ¹²C with E < 3 GeV
 - P + A -> n + X
 - d + A -> n + X
 - α + A -> n + X
 - ¹²C + A -> n + X
- Pion production
 - P + A -> π[±] + X
- 73 thin target experiments with reasonably small systematic
- Control on differential spectra (63 histograms)

- Models under testing:
 - Binary Cascade
 - Binary Ion cascade
 - Bertini Cascade
 - Wilson-Abrasion model
 - CHIPS
 - LHEP
- Additionally to double differential spectra for comparisons with the data a set of histograms with inclusive spectra is produced

Neutron spectra by protons in Aluminum

Binary Cascade

Bertini Cascade

High Energy >50GeV

We have 3 models (QGS, FTF and HEP) for these energies.

HEP Model pi- Scattering on Mg, Plab 320 GeV/c

Z.Phys.C62(1994)199

HEP Model pi+(70deg) from proton (400GeV) on Ta

Isotope production by precompound models

- We have two precompound models.
 - One is currently integrated within Bertini Model
 - Another is implemented independently, so that it can be used by itself or coupled to Binary Model
- The range of nuclear excitation energies handled by these precompoud models are most important to isotope production
- Next slide compare the two models to data.

Cross section(mb) vs A (for Element Z) in Al(p,X) at 800 MeV

Data: H. Vonach et al., Physical Review C, 55, 2458, 199705

Validation of Chiral Invariant Phase Space decay (CHIPS) model

- Capture
- Anti Proton Annihilation
- Gamma-Nucleus
- Elastic Scattering

CHIPS Model

Antiproton annihilation on ²³⁸U nucleus

Verification of gamma-nuclear reactions CHIPS Model

np and pp Elastic Cross Section

Low Energy (<20MeV) Neutrons

Neutron High Precision Models and Data Sets These are data driven models, therefore comparison results to the ENDF data should be very close.

Verification of High Precision Neutron models

Ions Binary Light Ions Cascade Wilson Abrasion Ablation Electromagnetic Dissociation

Neutron Yield Fe 400 MeV/n beams

Carbon

Aluminum

Validation of Wilson Abrasion Ablation Model

¹²C-C 1050 MeV/nuc

J W Wilson et al., "NUCFRG2: An evaluation of the semi-emperical nuclear fragmentation database," NASA Technical Paper 3533, 1995.

Validation of G4EMDissociaton Model and Cross Section

Target Emulsion nuclei: Ag 61.7%, Br 34.2%, CNO 4.0% and H 0.1%

Projectile	Energy [GeV/nuc]	Product from ED	G4EM Dissociation [mbarn]	Experiment [mbarn]
Mg-24	3.7	Na-23 + p	124 ± 2	154 ± 31
Si-28	3.7	Al-27 + p	107 ± 1	186 ± 56
	14.5	Al-27 + p	216 ± 2	165 ± 24† 128 ± 33‡
O-16	200	N-15 + p	331 ± 2	$\begin{array}{c} 293 \pm 39 \\ 342 \pm 22 \\ \end{array}$

M A Jilany, "Electromagnetic dissociation of 3.7 A GeV 24Mg and 28Si projectiles in nuclear emulsion," *Nucl Phys*, **A705**, 477-493, 2002.

Validation of EM Standard Physics

Validation of Standard EM Physics

- Unit tests by developers
- Comparisons with Geant3
- Comparison against theoretical predictions
- Comparison against evaluated data
- Testing suite:
 - About 20 G4 examples are used for different tests
 - More than 100 macro files
 - Limited statistic is regularly executed by sst
 - Large statistic tests are executed by the EM group
 - Results for each reference version of G4 are archived
- User validation

EM standard test suite examples/extended/electromagnetic

Test	Purpose	Responsible	N macro	G3
TestEm0	G4EmCalculator	M.Maire	5	
TestEm1	Tracking/EM physics in infinite media	M.Maire	15	+
TestEm2	EM shower in homogeneous media	M.Maire	7	+
TestEm3	Sampling calorimeter	M.Maire	23	+
TestEm4	Gamma interactions	M.Maire	3	+
TestEm5	Multiple scattering	L.Urban	18	+
TestEm6	High energy muons	H.Burkhardt	6	
TestEm7	Bragg peak	M.Maire	6	
TestEm8	PAI models	V.Grishine	2	
TestEm9	Crystal Calorimeter	V.Ivanchenko	5	1
TestEm10	TRD models	V.Grichine	2	

TestEm11	Deep dose profile (plane)	M.Maire	5	+
TestEm12	Deep dose profile (spherical)	M.Maire	4	
TestEm13	Gamma interactions	M.Maire	6	+
TestEm14	Cross sections and mfp	M.Maire	5	+
TestEm15	Multiple Scattering	M.Maire	4	
TestEm16	Synchrotron radiation	H.Burkhardt	3	
TestEm17	Muon processes	R.Kokoulin, A.Bogdanov	6	
GammaTherapy	Bremsstrahlung beam	V.Ivanchenko	5	
test31	Sliced media	V.Ivanchenko	5	-

Multiple Scattering Update for the release 8.1 (CHEP'06)

0.4

0.45

angle(rad)

0.5

Atlas HEC Calorimeter (Monte Carlo' 2005)

19

18

20

40

60

100

Beam Energy (GeV)

120

- The first setup for the suite
- ATLAS HEC structure is used as a reference since release 5.2
- Based on TestEm3
- Resolution is compared with the data
- 30 GeV e⁻ were chosen (Gaussian spectrum)

Default EM physics

Comparison with Published Data (preliminary)

ZEUS calorimeter test beam data

- NIM A262 (1987) 229
- NIM A274 (1989) 134
- E.Bernardi thethis
- PS CERN measurements

Two calorimeter structures:

 5mm Pb/5mm Sc
 10 mm Pb/2.5 mm Sc
 Accurate description of sizes and materials was needed

Verification theory/Geant4 (IEEE Trans. Nucl. Sci. 53(2006)270)

Differention cross sections precision better 5%

Muon stopping power Precision about 2%

LHCB Type Calorimeter

EM standard

Validation Activities of Low Energy EM group

Lines of activity

Basic physics quantities of Geant4 models

- Cross sections, angular distributions, final state spectra etc.
- In progress: Bremsstrahlung, Atomic Relaxation

Experimental use cases

- Related to the assessment of basic physics quantities
- In progress: Bragg peak of protons, LHC radiation monitors

LowE Electromagnetic specific models

- Models with no other counterpart in Geant4
- e.g. new Geant4-DNA models at the eV scale

Validation of EM physics

An example of activity: ALL Geant4 Bremsstrahlung models

The sets of cross section models for γ have already been extensively and successfully validated K. Amako et al., published in IEEE Trans. Nucl. Sci.

Now e⁻/e⁺ EM processes to be taken into account

more difficult to find reference data and to disentangle effects (because of the continuous part)

For Bremsstrahlung, 3 sets of models:

G4eBremsstrahlung

G4LowEnergyBremsstrahlung

G4PenelopeBremsstrahlung

3 alternative angular distributions:

Tsai, 2BS, 2BN

Angular distribution of photons is strongly model-dependent

Relative comparison (90 deg dir). The shapes ~agree → More work in progress Statistical analysis to be done

EM - ICRU 49 + Elastic + Precompound + default Nuclear Deexcitation

Comparison of Geant4 Electromagnetic Physics Models Against the NIST Reference Data

910

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 4, AUGUST 2005

Comparison of Geant4 Electromagnetic Physics Models Against the NIST Reference Data

Katsuya Amako, Susanna Guatelli, Vladimir N. Ivanchenko, Michel Maire, Barbara Mascialino, Koichi Murakami, Petteri Nieminen, Luciano Pandola, Sandra Parlati, Maria Grazia Pia, Michela Piergentili, Takashi Sasaki, and Laszlo Urban

Abstract—The Geant4 Simulation Toolkit provides an ample set of physics models describing electromagnetic interactions of particles with matter. This paper presents the results of a series of com-parisons for the evaluation of Geant4 electromagnetic processes with respect to United States National Institute of Standards and Technologies (NIST) reference data. A statistical analysis was performed to estimate quantitatively the compatibility of Geant4 elec-tromagnetic models with NIST data; the statistical analysis also highlighted the respective strengths of the different Geant4 models

Index Terms-Geant4, Monte Carlo, NIST, validation

I. INTRODUCTION

→ EANT4 is an object oriented toolkit [1] for the simulation of the passage of particles through matter. It offers an ample set of complementary and alternative physics models for electromagnetic and hadronic interactions, based on theory, experimental data or parameterizations

The validation of Geant4 physics models with respect to authoritative reference data is a critical issue, fundamental to establish the reliability of Geant4-based simulations. This paper is focused on the validation of Geant4 electromagnetic models, with the purpose to evaluate their accuracy and to document their respective strengths. It presents the results of comparisons of Geant4 electromagnetic processes of photons, electrons, protons and α particles with respect to reference data of the United States National Institute of Standards and Technologies (NIST) [2], [3] and of the International Commission on Radiation Units and Measurements (ICRU) [4], [5].

Manuscript newived Murch 13, 2005, www.ind Ayril 29, 2005, K. Arabo, K. Murakowi, and T. Sasaki, and with CHEST, JST, Kawaguchi, Saitama, 3020012, Japan (e-mail: Katusya). Anako Wesk.jpt, Koichi Murakami Wesk.jpt; Takahi Sasaki @kek.jp). S. Gaudella, K. Mascalamo, M. G. Pas, and M. Pergentili are with INFN S. Gaudella, K. Mascalamo, M. G. Pas, and M. Pergentili are with INFN

Sezione di Genova, 16146 Genova, Italy (s-mail: Sumana.Guatelli@ge.infn.it; Barbura.Mascialino@ge.infn.it; Maria-Grazia.Pia@ge.infn.it; Michela. Fergentil@ge.infn.it).

V. N. Ivanchenko is with CERN, CH-1122, Geneva, Switzerland (e-mail: Vladimir.lvantchenko@cern.ch).
 M. Maire is with LAPP, F-74941 Annecy, France (e-mail: mir.@luemic22.fc

P. Nieminen is with ESA, 2201 AZ Noordwijk ZH, The Netherlands (e-mail:

Petteri, Nieminen@esa.int) L. Pandola and S. Parlati are with INFN Laboratori Nazionali del Gran Sasso, 67010 Assergi, L'Aquila, Italy (e-mail: Luciano.Pandola@lngs.infn.it; Sandra.Parlati@lngs.infn.it).

L. Urban is with the KFKI Research Institute for Particle and Nuclear Physics, H-1121 Budapest, Hungary (e-mail: Laszlo.Urban@cern.ch), Digital Object Identifier 10.1109/TNS.2005.832691

0018-9499%20.00 @ 2005 IEEE

TABLE I GEANT4 ELECTROMAGNETIC MODELS IN THIS COMPARISON STUDY

Particle	Geant4 Models in Electromagnetic Packages		
Photon	Geant4 Low Energy - EPDL		
	Geant4 Low Energy - Penelope		
	Geant4 Standard		
Electron	Geant4 Low Energy - EEDL		
	Geant4 Low Energy - Penelope		
	Geant4 Standard		
Proton	Geant4 Low Energy - ICRU 49		
	Geant4 Low Energy - Ziegler 1985		
	Geant4 Low Energy - Ziegler 2000		
	Geant4 Standard		
α	Geant4 Low Energy - ICRU 49		
	Geant4 Low Energy - Ziegler 1977		
	Geant4 Standard		

The simulation results were produced with Geant4 version 6.2. The Geant4 test process verifies that the accuracy of the physics models will not deteriorate in future versions of the toolkit with respect to the results presented in this paper.

II. OVERVIEW OF GEANT4 ELECTROMAGNETIC PHYSICS PACKAGES

The Geant4 Simulation Toolkit includes a number of packages to handle the electromagnetic interactions of electrons, muons, positrons, photons, hadrons and ions. Geant4 electromagnetic packages are specialised according to the particle type they manage, or the energy range of the processes they cover.

The physics processes modeled in Geant4 electromage netic packages include: multiple scattering, ionization, Bremsstrahlung, positron annihilation, photoelectric effect, Compton and Rayleigh scattering, pair production, synchrotron and transition radiation, Cherenkov effect, refraction, reflection, absorption, scintillation, fluorescence, and Auger electrons emission [1].

Alternative and complementary models are provided in the various packages for the same process. The Geant4 electromage netic models studied in this paper are listed in Table I.

A. Standard Electromagnetic Package

The Geant4 Standard electromagnetic package [8] provides a variety of models based on an analytical approach, to describe the interactions of electrons, positrons, photons, charged hadrons and ions in the energy range 1 keV-10 PeV.

- IEEE Trans. Nucl. Sci. 52-4 (2005) 910-918
- Covering all available EM models of Geant4

 Rigorous statistical methods for the comparison of simulated and experimental data distributions

Validations activities in Space Applications

Comparison of Geant4 Sector-shielding and Monte Carlo Analyses for Space Applications¹

R. Lindberg, G. Santin, P. Nieminen, H. Evans, E. Daly, June 2006

- Compared Total Ionising Dose using Sector-shielding method (SSAT^{*,2}) and Monte Carlo method (GRAS^{**,3}).
- Geant4 version: 8.0.p01 using standard and hadronics physics
- Comparisons performed on geometries with increasing complexity:
 - Slab
 - Solid Sphere
 - Hollow Box.
 - Realistic Satellite Geometry (ConeXpress ~100 volumes)
- * Sector Shielding Analyses Tool (SLANT method)
- ** Geant4 Radiation Analyses for Space.ver 1.3

- Space environment based on 200-day geostationary transfer orbit and ~12 year geostationary orbit.
 - Trapped protons: < 400 MeV
 - Solar protons: < 200MeV</p>
 - Trapped Electrons: < 7 MeV</p>

ConeXpress satellite, modelled in GDML.

 Compared results from mono-energetic particles between GRAS and Shieldose2 (used as dose-depth curve in SSAT)

Detector is 2 mm Si slab behind 3 mm Aluminium slab.

• As would be expected, protons show very good agreement to within 3%

•For electrons, as incident particle energy increases, agreement is better. Shieldose2 predicting higher dose.

	010				
	Thickness	Tr. p (%)	Tr. e (%)	Solar p (%)	Total dose (%)
	2 mm	92±0.3	60±0.2	101±0.1	62±0.3
Slab	7 mm	81±0.6	63±2	102±0.2	74±2
	20 mm	82±0.8	61±3	102±0.3	75±4
	2 mm	110±0.7	100±0.9	111±0.3	85±3
Sphere	7 mm	75±1	114±11	89±0.5	86±11
	20 mm	86±2	82±39	110±1	72±12
	2 mm	77±2	34±1	91±1	36±2
Box	7 mm	85±6	31±5	97±2	59±18
	20 mm	83±8	57±15	103±4	85±28

RATIO OF GRAS/SSAT FOR SIMPLE GEOMETRIES IN

CTO

TOTAL DOSES ON CONEXPRESS SUBSYSTEMS IN GTO

	GRAS TID	SSAT TID	Difference (%)	
Subsystem	[rad]	[rad]	(Dssat-Dgras)/Dgras	F
PCDU	398	824	110	1
DHS Master	330	655	100	
PPU1	637	1602	150	
PPU3	473	1598	240	2
Star-Tracker1	1077	5838	440	
Star-Tracker2	1243	5871	370	
DockCamera1	470	1639	250	3
CaptureTool	272	2539	830	
Sun-Sensor	29632	47113	60	

Simple 3D geometries:

 Reasonable correlation – between a few per cent (solar protons) to a factor 3 (trapped electrons).

ConeXpress:

- Difference of up to factor 8 for most heavily shielded subsystems
 General remarks:
- Protons show better results than electrons → electrons scatter in a more irregular way
- Trend can be seen where higher shielding increases differences
- Largest influence on results seem to be geometry complexity

References:

- R. Lindberg et al., "Detailed Comparison of Monte Carlo Sector-Shielding Analyses for Space Applications", IEEE Trans. Nucl. Sci., accepted for publication.
- G. Santin et al., "GRAS: A general purpose 3D simulation tool for space environment effects analysis", IEEE Trans. Nucl. Sci. 52, Issue 6, 2005, pp. 2294 – 2299
- G. Santin et al., "New Geant4 based simulation tools for space radiation shielding and effects analysis", Nuclear Physics B (Proc. Suppl.) 125, pp. 69-74, 2003

Validation Activities in Medical Applications

Results from the recent carbon test beam at HIMAC

Koichi Murakami Statoru Kameoka

KEK CRC

Koichi Murakami

Geant4 Physics Verification and Validation (17-19/Jul./2006)

Introduction

A joint project among Geant4 developers, astrophysicists and medical physicists in Japan

Development of software framework for simulation in radiotherapy

≫funded by the Core Research for Evolutional Science and Technology (CREST) program organized by Japan Science and Technology Agency (JST) from 2003 to 2008

The project goal

- ✓ provides a set of software components for simulation in radiotherapy (especially hadrontherapy),
 - \gg well designed general purpose software framework
 - DICOM/DICOM-RT interface
 - \gg application of GRID computing technology
 - \gg visualization tools

 \checkmark In addition, physics validation is one of key issues.

Comparison between Experiment and Simulation (290 MeV/u)

(17-19/Jul./2006)

Many validations are also done by HEP peoples and presented in CHEP06, Calor06, Hadron Shower Simulation Workshop and so on. Following slides will introduce web pages where help users to find valuable information about Geant4 validations

http://geant4.web.cern.ch/geant4/results/results.shtml

Geant 4	Download User Forum Gallery Site Index Contact Us Search Geant4
ome > <u>Results & Publications</u> > Testing and Validation	
esting and Validation	
isted here is a sample of Geant4 testing and validatio	in results.
Electromagnetic Physics	
 Detailed electromagnetic physics results, M.Mair Hungary) Photon attenuation coefficients in water: NIST da processes (statistical errors on simulation < 1%) institute for Cancer Research, IST Genova, Italy CMS Barrel ECAL, S. Nikitenko (CMS), CMS Wei Borexino simulation results, S. Magni e E. Meron Geant4 simulation flow Activity Detectors at th Multiple Scattering on single materials, L. Urban Muons, comparisons of Geant3/Geant4 simulation Spain, CMS) L3, 45 GeV muons: GEANT3.15, GEANT4.0.1 ar Detailed Geant3-Geant4 comparison of muons ii End point deviation, Continuous energy lo Total energy lost by delta rays per event, Total energy lost by pair production per event 	re (LAPP) and L.Urban (RMKI Reserch Institute, Budapest, sta, Geant4 standard processes and Geant4 Low Energy , S. Agostinelli, F. Foppiano, S. Garelli, M. Tropeano, National ek at PSI i (INFN Milano, Italy) <u>te Gran Sasso Laboratory</u> , S. Cremonesi et al. (INFN Milano, Italy) (RMKI Reserch Institute, Budapest, Hungary) <u>on and data, Part 1</u> and <u>Part 2</u> , P. Arce (University of Santander, <u>nd data</u> P. Arce (University of Santander, Spain, CMS) n L3, P. Arce (University of Santander, Spain, CMS): <u>st5, Energy lost by lonisation</u> , and <u>Delta rays energy</u> , <u>nt</u> , and <u>E of Bremsstrahlung's gamma</u> , <u>vent</u>
Hadronic Physics Simulation of the CMS HCAL test-beam setup H2 Neutron Induced Isotope Production with Geant4 Results from the photon evaporation process in Test of pil production in GEANT4, D. Dannheim Nuclear deexcitation and preequilibrium, multiplic	2-1996 with Geant4, V. Lef bure, CMS Note <u>1 In CMS</u> , J.P. Wellisch, CMS Note, 1999 Geant4, M.G. Pia <i>et al.</i> (INFN Genova, Italy) i, CERN Summer Student Report, 1999 <u>city (Pb)</u> , V. Lara (University of Valencia, Spain)

Results on stopping pions, including Geant3-Geant4 comparison, M.G. Pia (INFN Genova, Italy)

- Official Testing and Validation page of Geant4 collaboration
- However most contents are
 - Out of link
 - Out of date
- Should be update soon and must be well maintained.

http://www.ge.infn.it/geant4/lowE/

- Low Energy Electromagnetic Physics Working group web page
- Wide variety of information are available including validation results

http://www.ge.infn.it/statisticaltoolkit/

• statistical-toolkit-users@cern.ch: User Forum

Reference publication

G.A.P. Cirrone, S. Donadio, S. Guatelli, A. Mantero, B. Mascialino, S. Parlati, M.G. Pia,

 Statistical Toolkit web page

 It is an open source software toolkit for statistical data analysis

Geant4 Physics Book

- Provide the quality of Geant4 physics to users
- Focus to validations
- To complement Physics Reference Manual of Geant4
- Contents should have
 publication-level quality
- This project in progress

http://lcgapp.cern.ch/project/simu/validation/

Hebruary 23, 20
 March 22, 2006

- LCD Physics Validation Project Web page
- Slides library of previous meetings is quite useful
- Also has many useful links
- HEP oriented

http://indico.cern.ch/conferenceDisplay.py?confld=4532

© Mid <u>category</u> view. CDS Agenda style v focus on:all days v C <u>CDS Agenda style</u> (<u>Login</u> all sessions v details: [contribution v <u>manage</u> □ □ □ □ □ □ 1				
Date Chairp Ma	Geant4 Physics Verification and Validation Menday 17 July 2006 14:00->20: Tuesday 18 July 2006 09:30->11 Tuesday 18 July 2006 09:30->11 /Time: from Monday 17 July 2006 (08:00) to Wednesday 19 July 2006 (18:00) Tuesday 18 July 2006 11:00->17 erson: John APOSTOLAKIS Wedneaday 19 July 2006 09:30->17:10	Experiment validation (32-1-A24) EM physics verification validation (40-85-001) Madronic verification & validation (40-85-001) Hadronic verification & validation (40-85-001)		
Monda Exper	<u>videoconference</u> , <u>vr/s 1/U/</u> y 17 July 2006 iment validation (1400-20(30)	nairperson: Alberto Ribon (CERM)		
14:00	MUSCAT validation of Geant4 (30) (>>>> Paper; >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Malcolm ELLIS		
14:30	Geant4 validation with ATLAS calorimeter test-beams (45) (Sides 🔂 🖭)	Tancredi CARLI		
15:15	Coffee break			
15:45	ATLAS HEC test-beam validation of Geant4 (301 (See Slides 2)) Andrei KIRYUNIN			
16:15	CMS HCAL test-beam validation of Geant4 (30) (🖦 <u>Slides</u> 🔁)	Stefan PIPEROV		
16:45	Results from the recent carbon test beams at HIMAC (20) (> Slides 🔂 🗐)	Koichi Murakami (KEK)		
Tuesday 18 July 2006				
EM pn	ysics verification validation (09:30->11.00)	Marinerson: Alberto Ribon (CERN)		
09:30	Recent validation results for EM standard (20) (* <u>Slides</u> 2) Vladimir Ivanchenko (<i>CERN</i>)			
09:50	Geant4 Simulation for E166 Experiment at SLAC (05) (* <u>Slides</u>) Andreas Schaelicke (DESY)			
09:55	Comparison of G4 EM models with SANDIA data (15) (* <u>Slides</u> (*) Omrane Kadri (CNSTN)			
10:10	(10) Status of validations in the LowEnergy EM and Advance Example groups (20) Maria Grazia Pia (<i>INFN</i> , (Segmova) Genova)			
10:30	Coffee break	~		

- Web page of "Geant4 Physics Verification and Validation Workshop" on July 2006
- Not only Geant4 developers but also several HEP experiment group presented their validations

http://www.slac.stanford.edu/~tkoi/G4HadInt.html

Geant4 Hadron Interaction Test

This web page shows results of Geant4 vailidation tests for hadronic interactions

This page shows the result of the Geant4 8.1

The results of previous version are seen in here. 81 80,001 80 71,001 71 70,001 70 62,002 61 60 Charged Multiplicity Distribution of pp Reactions

Protons pass liquid hydrogen sphere and charged multipliciy is scored. Protons momentum 147, 250, 800 GeV/c (corresponding to Experimental data Diameter and density of liquid hydrogen spehre is 1.0 cm and 0.0708 g/cm3

Data Reference

147 GeV/c: TOPOLOGICAL, TOTAL AND ELASTIC CROSS-SECTIONS FOR K+ P, PI+ P AND P P INTERACTIONS AT 147-GEV/C, Brick, D. et al, Phys. Rev. D25, 2794 (1982) 250 GeV/c: CROSS-SECTIONS AND CHARGED MULTIPLICITY DISTRIBUTIONS FOR PI+ P, K+ P AND P P INTERACTIONS AT 250-GEV/C, Adamus, M et al, Z. Phys. C32 475 (1986) 800 GeV/c: MULTIPLICITY OF CHARGED PARTICLES IN 800-GEV P P INTERACTIONS, Ammar, R. et al,

- Hadron Physics
 - pp interactions
 - nucleus-nucleus interactions
- EM Physics
 - Multiple Coulomb Scattering
 - Thin Layer Energy Loss
 - Multi Layer Faraday Cup
- Medical related validations
- And so on

Summary

- Many validations are done by not only developers but also users.
- However, there is no place where are collecting those results and activities. This situation make it difficult that a user find a validation of his/her interested.
- "Testing and Validation" in Geant4 web site is the first candidate to become such a place. However it looks like left without maintenances. It should be re-organized and muse be maintained well in the future.
- The results are reasonably well in most cases, however we still discover unexpected disagreements. E.g. Visible Energy of Sampling Calorimeter.
- Future development of Geant4 should be pursed in a collaboration with these validation activities.