
1

Geant4 Physics Based
Event Biasing

Jane Tinslay, SLAC

October 2006, Geant4 v8.1p01

 Jane Tinslay, SLAC 2

Outline
 Introduction
 Variance reduction
 Built in biasing options
 G4WrapperProcess
 Primary particle biasing
 Radioactive decay biasing
 Leading particle biasing
 Cross section biasing
 Bremsstrahlung splitting example
 Summary & future plans

 Jane Tinslay, SLAC 3

Introduction

 Event biasing(variance reduction) techniques are important
for many applications

 Geant4 is a toolkit
Users are free to implement their own biasing techniques

 Geant4 provides the following features to support event
biasing
Some built in biasing techniques of general use with related

examples
A utility class, G4WrapperProcess, to support user defined

biasing

 Jane Tinslay, SLAC 4

Variance Reduction
 Variance reduction techniques are used to reduce computing

time taken to calculate a result with a given variance

Want to increase efficiency of the Monte Carlo
Measure of efficiency given by

 s = variance on calculated quantity
 T = computing time

!

" =
1

s
2
T

 Jane Tinslay, SLAC 5

 When using a variance reduction technique, generally want to apply our
own probability distribution, p’(x) in place of the natural one, p(x)
 p’(x) enhances the production of whatever it is that were interested in

 Basically bypassing the full, slow, analogue simulation
 To get meaningful results, must apply a weight correction to correct for

the fact that we’re not using the natural distribution:

 Preserves natural energy, angular distributions etc

 In general, all x values in the p(x) distribution should be possible in the
p’(x) distribution
!

w =
p(x)

p'(x)

 Jane Tinslay, SLAC 6

Built in Biasing Options
 Primary particle biasing ✔ Since v3.0

 Radioactive decay biasing ✔ Since v3.0

 Leading particle biasing - Hadronic
Partial MARS migration n, p, π, K (<5 GeV) ✔ Since v4.0
General lead particle biasing ✔ Since v4.3

 Cross section biasing - Hadronic ✔ Since v4.3

 Geometry based biasing (see talk by Alex Howard)
 Importance sampling ✔ Since v5.0
Weight cutoff and weight window ✔ Since v5.2

 Jane Tinslay, SLAC 7

G4WrapperProcess
 G4WrapperProcess can be used to implement user defined event

biasing
 Is a process itself, i.e inherits from G4VProcess
Wraps an existing process - by default, function calls are

forwarded to existing process
Non-invasive way to modify behaviour of an existing process

 To use:
 Subclass G4WrapperProcess and override appropriate methods, eg

PostStepDoit
Register subclass with process manager in place of existing

process
Register existing process with G4WrapperProcess

 Jane Tinslay, SLAC 8

 G4WrapperProcess structure

class G4WrapperProcess : public G4VProcess {

 G4VProcess* pRegProcess;
…
inline
void G4WrapperProcess::RegisterProcess(G4VProcess* process)
{
 pRegProcess=process;
…
}
…
inline G4VParticleChange*
G4WrapperProcess::PostStepDoIt(const G4Track& track,
 const G4Step& stepData)
{
 return pRegProcess->PostStepDoIt(track, stepData);
}

 Jane Tinslay, SLAC 9

void MyPhysicsList::ConstructProcess() {
 …
 G4LowEnergyBremsstrahlung* bremProcess =
 new G4LowEnergyBremsstrahlung();

 MyWrapperProcess* wrapper = new MyWrapperProcess();
 wrapper->RegisterProcess(bremProcess);

 processManager->AddProcess(wrapper, -1, -1, 3);
}

class MyWrapperProcess : public G4WrapperProcess {
…
 G4VParticleChange* PostStepDoIt(const G4Track& track,
 const G4Step& step) {
 // Do something interesting
 }
}

 Example:

 Jane Tinslay, SLAC 10

Primary Particle Biasing

 Increase number of primary particles generated in a particular
phase space region of interest
Weight of primary particle is appropriately modified

 Use case:
 Increase number of high energy particles in cosmic ray

spectrum

 General implementation provided by
G4GeneralParticleSource class
Bias position, angular and energy distributions

 Jane Tinslay, SLAC 11

 G4GeneralParticleSource is a concrete implementation of
G4VPrimaryGenerator
 Instantiate G4GeneralParticleSource in your

G4VUserPrimaryGeneratorAction class
Configure biasing to be applied to sampling distributions

through interactive commands

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction() {

 generator = new G4GeneralParticleSource;

}

void
MyPrimaryGeneratorAction::GeneratePrimaries(G4Event*anEvent){

 generator->GeneratePrimaryVertex(anEvent);

}

 Jane Tinslay, SLAC 12

 Extensive documentation at
http://reat.space.qinetiq.com/gps/

 Examples also distributed with Geant4
examples/extended/eventgenerator/exgps

 Online manual
 Detailed examples

online

 Jane Tinslay, SLAC 13

Radioactive Decay Biasing

 G4RadioactiveDecay simulates decay of radioactive nuclei

 Implements the following biasing methods
 Increase sampling rate of radionuclides within observation times

 User defined probability distribution function

Nuclear splitting
 Parent nuclide is split into user defined number of nuclides

Branching ratio biasing
 For a particular decay mode, sample branching ratios with

equal probability

 Jane Tinslay, SLAC 14

 G4RadioactiveDecay is a process
Register with process manager
Biasing can be controlled in compiled code or through

interactive commands

void MyPhysicsList::ConstructProcess()
{
 …
 G4RadioactiveDecay* theRadioactiveDecay =
 new G4RadioactiveDecay();

 G4ProcessManager* pmanager = …
 pmanager ->AddProcess(theRadioactiveDecay);
…
}

 Jane Tinslay, SLAC 15

 Extensive documentation at
http://reat.space.qinetiq.com/septimess/exrdm/
http://www.space.qinetiq.com/geant4/rdm.html

 Example at
examples/extended/
radioactivedecay/exrdm

 Jane Tinslay, SLAC 16

Leading Particle Biasing - EM

 In analogue approach to electromagnetic shower simulation,
each shower followed to completion

 Applications where high energy particles initiate
electromagnetic showers may spend a significant amount of
time in shower simulation
 Computing time increases linearly with energy

 Leading particle biasing may significantly reduce computing
time for suitable applications. Useful for:
Estimating shower punch through
Reducing time taken to simulate showers resulting from π0s in

hadronic cascades for example

 Jane Tinslay, SLAC 17

 Most important processes contributing to EM
shower development at high energies are
bremsstrahlung and pair production
 Two secondaries produced in each interaction

 Leading particle biasing involves selecting one of
the secondaries with a probability proportional to
secondary energy
 Highest energy secondary which contributes to

most to the total energy deposition preferentially
selected

 Lower energy secondary selected some of the
time

 Remaining secondary killed
 Weight surviving secondary

 Use G4WrapperProcess class described previously
useful for to implement user defined leading
particle biasing

 Jane Tinslay, SLAC 18

Leading Particle biasing - Hadronic

 Useful for punch through studies

 G4Mars5Gev
 Inclusive event generator for hadron(photon) interactions with

nuclei
Translated from Mars13(98) version of MARS code system

MARS is a particle simulation Monte Carlo
More details on MARS at http://www-ap.fnal.gov/MARS

Generates fixed number of particles at each vertex with
appropriate weights assigned

Valid with energies E< 5 GeV with the following particle types
π+, π-, K+, K-, K0L, K0S, proton, neutron, anti-proton,

gamma

 Jane Tinslay, SLAC 19

 To use, create a G4Mars5GeV object and register with an
appropriate inelastic process:

 More examples provided in the LHEP_LEAD,
LHEP_LEAD_HP, QGSC_LEAD, QGSC_LEAD_HP physics
lists

 Documentation:
http://geant4.web.cern.ch/geant4/support/proc_mod_catal

og/models/hadronic/LeadParticleBias.html

void MyPhysicsList::ConstructProcess() {
 …
 G4Mars5Gev* leadModel = new G4Mars5GeV();

 G4ProtonInelasticProcess* inelProcess =
 new G4ProtonInelasticProcess();
 inelProcess->RegisterMe(leadModel);

 processManager->AdddiscreteProcess(inelProcess);
}

 Jane Tinslay, SLAC 20

 G4HadLeadBias
Built in utility for hadronic processes

 disabled by default

Keep only the most important part of the event and
representative tracks of given particle type
 Keep track with highest energy, I.e, the leading

particle
 Of the remaining tracks, select one from each of the

following types if they exist: Baryons, π0’s, mesons,
leptons

 Apply appropriate weight

Set SwitchLeadBiasOn environmental variable to activate

 Jane Tinslay, SLAC 21

Cross Section Biasing
 Artificially enhance/reduce cross section of a process
 Useful for studying

Thin layer interactions
Thick layer shielding

 Built in cross section biasing in hadronics for PhotoInelastic,
ElectronNuclear and PositronNuclear processes

 User can implement cross section biasing for other processes
through G4WrapperProcess
Documentation at http://www.triumf.ca/geant4-03/talks/03-

Wednesday-AM-1/05-F.Lei/

 Jane Tinslay, SLAC 22

 Built in hadronic cross section biasing controlled through
BiasCrossSectionByFactor method in G4HadronicProcess

 More details at
 http://www.triumf.ca/geant4-03/talks/03-Wednesday-AM-

1/03-J.Wellisch/biasing.hadronics.pdf

void MyPhysicsList::ConstructProcess() {
 …
 G4ElectroNuclearReaction * theElectroReaction =
 new G4ElectroNuclearReaction;

 G4ElectronNuclearProcess theElectronNuclearProcess;
 theElectronNuclearProcess.RegisterMe(theElectroReaction);

 theElectronNuclearProcess.BiasCrossSectionByFactor(100);
 pManager->AddDiscreteProcess(&theElectronNuclearProcess);
 …
}

 Jane Tinslay, SLAC 23

 Example of biasing through enhancing production of
secondaries

 Aim to increase Monte Carlo efficiency by reducing
computing time spent tracking electrons
 In this case only interested in scoring photons

 Enhance photon production by applying splitting when a
bremsstrahlung interaction occurs
 Instead of sampling photon energy & angular distributions just

once, sample them N times
Creates N unique secondaries
Different splitting method compared to importance sampling

where N identical copies are created

Uniform Bremsstrahlung Splitting

 Jane Tinslay, SLAC 24

 Electron energy is reduced by energy of just one photon
Energy is not conserved per event, although is conserved on

average

 As usual, remove bias introduced by generating multiple
secondaries by assigning a statistical weight to each secondary

N = number of secondary photons
Preserves correct photon energy and angular distributions

 No default bremsstrahlung splitting in Geant4 toolkit

 User can implement bremsstrahlung splitting through
G4WrapperProcess

!

weight =
Parent weight

N

 Jane Tinslay, SLAC 25

Example Implementation
 Create BremSplittingProcess class

 Inherit from G4WrapperProcess
Override PostStepDoIt method of G4WrapperProcess
 Introduce splitting configuration parameters

class BremSplittingProcess : public G4WrapperProcess {
 // Override PostStepDoIt method
 G4VParticleChange*
 PostStepDoIt(const G4Track& track, const G4Step& step);

 static void SetNSplit(G4int);
 static void SetIsActive(G4bool);
…
 // Data members
 static G4int fNSplit;
 static G4bool fActive;
};

 Jane Tinslay, SLAC 26

G4VParticleChange*
BremSplittingProcess::PostStepDoIt(const G4Track& track, const G4Step& step)
{
…
 G4double weight = track.GetWeight()/fNSplit;
 std::vector<G4Track*> secondaries; // Secondary store

 // Loop over PostStepDoIt method to generate multiple secondaries.
 for (i=0; i<fNSplit; i++) {
 particleChange = pRegProcess->PostStepDoIt(track, step);
 assert (0 != particleChange);
 G4int j(0);

 for (j=0; j<particleChange->GetNumberOfSecondaries(); j++) {
 secondaries.push_back(new G4Track(*(particleChange->GetSecondary(j))));
 }
 }
 particleChange->SetNumberOfSecondaries(secondaries.size());
 particleChange->SetSecondaryWeightByProcess(true);

 std::vector<G4Track*>::iterator iter = secondaries.begin(); // Add all secondaries

 while (iter != secondaries.end()) {
 G4Track* myTrack = *iter;
 myTrack->SetWeight(weight);
 particleChange->AddSecondary(myTrack);
 iter++;
 }
…
 return particleChange;
}

 Jane Tinslay, SLAC 27

 Finally, register BremSplittingProcess with electron process
manager

 Use same procedure to implement Russian Roulette +
bremsstrahlung splitting

void MyPhysicsList::ConstructProcess() {
…
 G4LowEnergyBremsstrahlung* bremProcess =
 new G4LowEnergyBremsstrahlung();

 BremSplittingProcess* bremSplitting =
 new BremSplittingProcess();

 bremSplitting->RegisterProcess(bremProcess);

 pmanager->AddProcess(bremSplitting,-1,-1, 3);
…
}

 Jane Tinslay, SLAC 28

Splitting factor = 100No splitting

Scoring
Geometry

Example demonstrating uniform
bremsstrahlung splitting

 Jane Tinslay, SLAC 29

Summary & Future Plans

 Presented a number of physics based event biasing
techniques
Some biasing options are implemented in Geant4 for

general use
Others need to be implemented by user

 Develop examples to demonstrate use
 See Alex Howard’s talk for information on geometrical

based biasing

