Geant 4

Field Visualisation

Jane Tinslay, SLAC

Outline

- Objectives
- Requirements
- Current Status
- Future plans

Objectives

- Develop generic field visualisation system
 - → Automatic & interactive field line generation
 - → 3D & 2D viewing
 - Animation
 - → Offer range of visualisation methods arrow plots, streamlines, line integral convolution...

Requirements

- Interactive capability very important
 - Explore potentially complicated field configurations
 - Field visualisation needs to be fast
- Occulusion a big problem in 3D field visualisation
 - Provide techniques to improve depth perception
- Multiple streamline seeding strategies
- Multiple streamline integration methods
- Multiple visualisation methods
- Integration into Geant4 framework
 - All drivers should have access to generated streamlines
 - Front end visualisation framework should be independent of field type Jane Tinslay, SLAC

Current Status

- Reasonably early stage
- General flow visualisation approach
 - → "Strategies for Interactive Exploration of 3D Flow Using Evenly-Spaced Illuminated Streamlines" Oliver Mattausch, Thomas Theul, Helwig Hauser, and Meister Eduard Groller
- Prototype automatic generation of evenly spaced streamlines
- Investigating streamline visualisation techniques
 - Use Open Inventor to implement illuminated streamlines

Evenly Spaced Streamlines

- "Creating Evenly-Spaced Streamlines of Arbitrary Density", Bruno Jobard and Wilfrid Lefer
 - Simple algorithm to generate long, evenly spaced streamlines in a single pass
 - Generate seed points a distance d_{sep} from each streamline
 - → Integrate forwards and backwards until streamline comes within a distance d_{test} to an existing streamline, where d_{test} = x%*dsep

Fig. 3. streamlines are derived from the first (thick) one by choosing seed points (circles) at a distance $d = d_{sep}$ from it

 Use regular cartesian search grids to test validity of next seed/streamline point

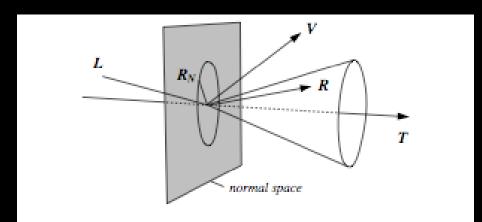
 For simplicity, test distance between candidate point and sample points along existing streamlines

Use G4ClassicalRK4 for actual streamline integration

Hard code magnetic field configuration for testing

Streamline Visualisation

- Use standalone Open Inventor (Coin) app for testing
- Test case based on streamlines generated with G4LineCurrentMagField
 - → 21 streamlines
 - → 2947 vertices
- Rendering using cylinders too slow for interactive investigation of field
- Poor visual perception with regular line primitives
 - → No illumination
- Illuminated lines produce reasonable effects
 - → ~25 times faster than cylinders


Illuminated Streamlines

- "Interactive Visualization Of 3D-Vector Fields Using Illuminated Stream Lines" Malte Zockler, Detlev Stalling, Hans-Christian Hege
- Realistic illumination of line primitives through hardware based texture mapping
- Generalisation of Phong reflection model of diffuse, ambient and spectral terms. Light intensity given by:

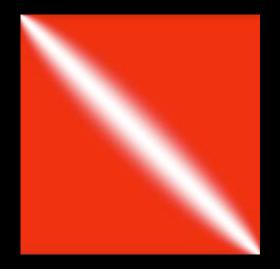
$$I = k_a + k_d L \cdot N + k_s (V \cdot R)^n$$

- → V = viewing direction
- → R = reflection vector
- → N = shininess (width of highlights)

 For line primitives, define normal as the normal coplanar to L and tangent T

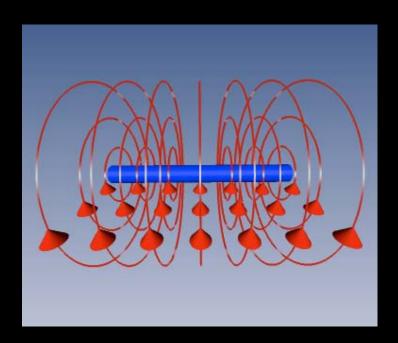
Ref: Zoller

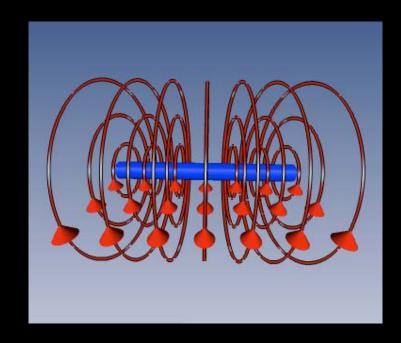
Figure 1: For line primitives there are infinitely many possible reflection vectors \mathbf{R} lying on a cone around \mathbf{T} . For the actual lighting calculation we choose the one contained in the \mathbf{L} - \mathbf{T} -plane.

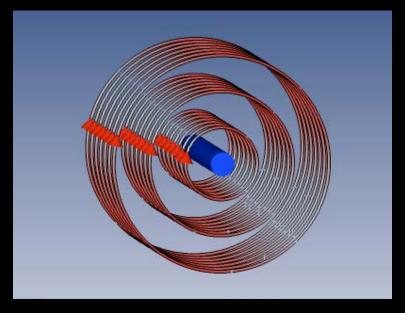

- Expensive to calculate new normal for each new view/light direction in software
 - → Exploit texture mapping capabilities of graphics hardware
 - → OpenGL

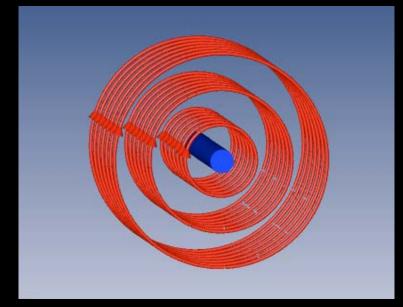
- Manipulate lighting equation such that light intensity is calculated using texture map & texture matrix
 - → Texture coordinates given by tangent vector
 - Reload texture matrix with new viewing/lighting directions when necessary
 - Strealine colour defined through texture map

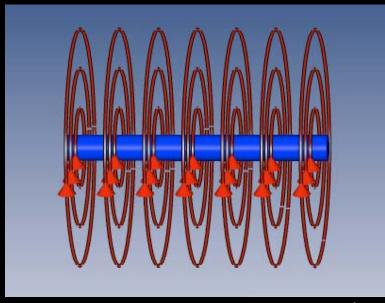
Texure matrix

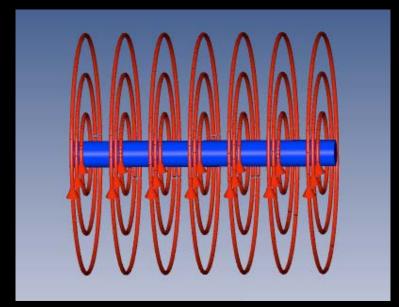

$$M = \frac{1}{2} \begin{pmatrix} L_1 & V_1 & 0 & 0 \\ L_2 & V_2 & 0 & 0 \\ L_3 & V_3 & 0 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix}$$

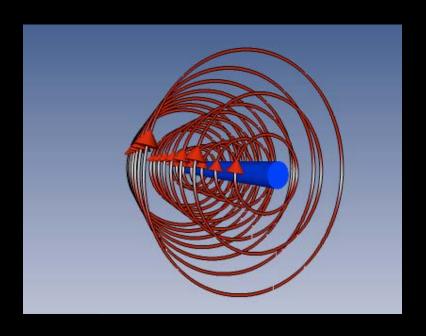

Example texture map

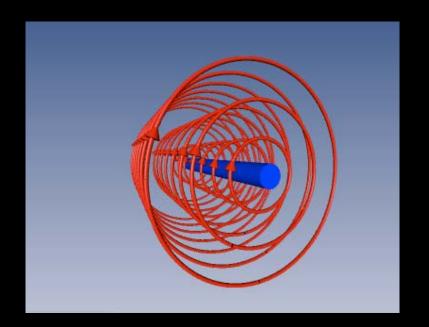

Haloing

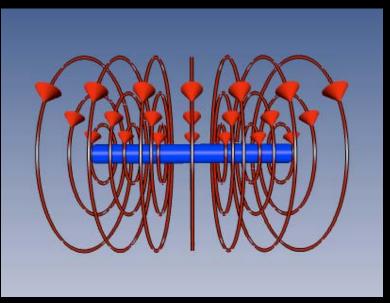

- Simple way to enhance depth perception
- Draw a larger black line behind streamline to form a black border

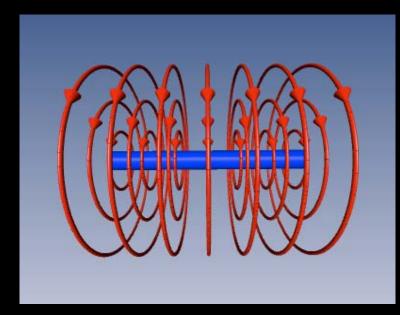





Line/Cylinder Comparisons







Conclusions & Future work

- Fast illuminated streamline visualisation promising
 - Understand artifacts
 - Perhaps create a toggle between line & cylinder rendering methods
- Investigate other methods enhancing visual perception for line primitives
 - → Fog
 - Tapering
 - → Transparency
 - → Colour
 - **→** ...

- Investigate more seeding strategies
 - Spacing proportional to field strength
 - Seeding templates for known field configurations
 - Random seeding
- Streamline integration
 - → Integration methods
 - Access to field in Geant4
- For December release, look at integrating BlineTracer example into visualisation system
- Aim to release some of new streamline based work in June release