Validation of EM Physics – 1 Wednesday, 14:00-15:10

Session will be focused on validation of EM physics for medical applications

The list of presentations:

- A.Bagulya et al., Proton/ion Bragg peak validation
- T.Aso Validation of proton range in water
- J.Jacquemier, M.Maire, How to check proton CSDA range?
- J.Jacquemier, M.Maire, Electron ranges
- S.Elles, M.Maire, Fano cavity setup

Validation of EM Physics – 2 Wednesday 11 October 2006 at 15:30

15:30 <u>Revision of Synchrotron Radiation</u> by V. Grichine/H. Burkhardt
Updated to new magn. field design to work with fields set in regions.
Add good parametrization widely used in accelerator community.

15:45 On Validation of EM Models in G4.8.1 by V. Ivantchenko/O. Kadri Comparison of SANDIA data on 1MeV beam penetration in semi-infinite media with G4 models.

16:00 <u>Stopping Powers Validation</u> by V. Ivantchenko, A.Ivantchenko Description of updates of hadron/ion ionization models and validation against

NIST data on stopping powers.

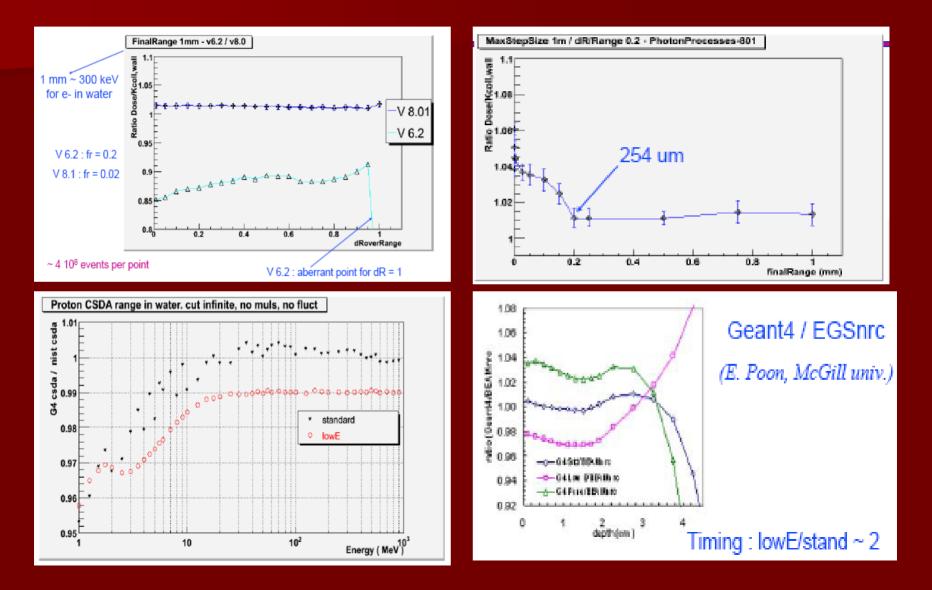
16:10 Stopping Powers in Gases by M. Maire/J. Jacquemier

Electron stopping powers in gases is investigated.

16:20 Extension of Optical Models by P. Goncalves

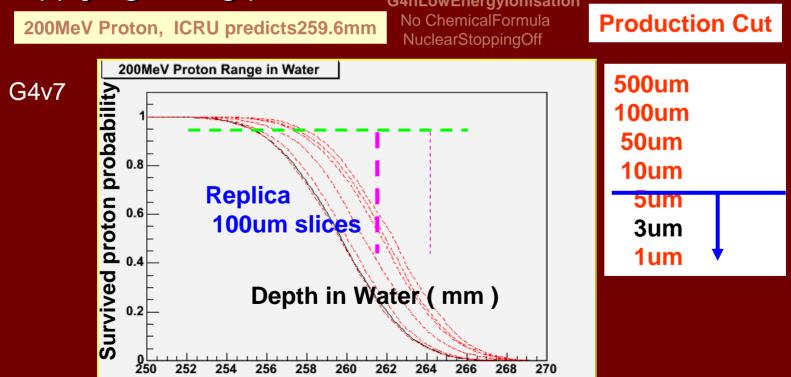
The LIP proposed extensions to the UNIFIED model and microfacet surface sampling will be summarized. Mie scattering is being suggested as a new optical photon process

EM Parallel Sessions


Standard EM group increase manpower and efforts delivered for different validation studies

- M. Maire et al., complete the set of TestEm
- The number of new results were reported by LAPP group
- Also CERN and Lebedev Institute contribute to regular tests
- It is shown that quality of MSC model is significantly increased

Number of issues raised

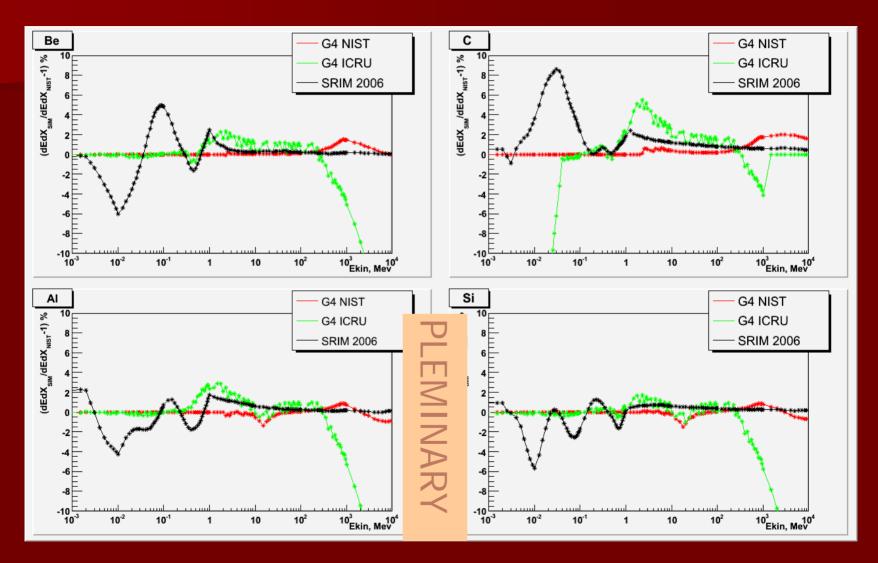

- T.Aso pointed out instability of Bragg peak position
- M.Maire show the level of instability of range calculation
- V.Ivanchenko show the difference between evaluated data from NIST and SRIM-2006
- These is more problem for medical application but may be also problem for space applications

Important Plots from LAPP

Objective (Tsukasa Aso)

- Hadron therapy using protons for cancer treatment requests better than 1% agreement with measurements and ICRU/NIST protocol data.
- We had reported a proton range shift problem in water about 3 year before. e.g. the range of **200 MeV** proton become longer about 3 mm than NIST prediction by applying a long production cut.

Summary/Discussion (Tsukasa Aso)


Import stopping power function

- Low EM has many options of parameterization at low energy region and has capability to change the transition energy between Bethe-Bloch and parameterization.
- Std EM: There is no option to replace parameterization, and there is no way to change transition energy.
 - Since v.8, G4_WATER uses PSTAR stopping power. But it is applied only at the energy region below 2 MeV.
 - Is the PSTAR stopping power available only for G4_WATER?
 - Can we import stopping power function of PSTAR in whole range?

Choice of Energy fluctuation model

- Low Energy EM : ElectronicFluctuationModel() method
- Std EM: G4UniversalFluctuation class
 - Can we use more general fluctuation model such as a model based on landau distribution?
 - It will be convenient for users to give a chance to switch the model.

Proton Stopping in Light Materials

Conclusions

- NIST PSTAR and ASTAR stopping powers are included inside G4 standard
 - However, NIST and SRIM-2006 stopping powers are different
 - Further study required
- To deliver correct stopping power and cross sections (static values) is not enough
- Simulation is dynamic
 - G4 models need to be stable against cut variation
 - Low-energy model dynamic should be repaired
 - There are smaller issues for standard also

X-rays and Optical Photons

Review and update of Synchrotron radiation process

- Optical photons improvements by LIP group will be available in the coming release
 - Extensions to the UNIFIED model
 - Microfacet surface
 - New process: Mie scattering