Hadronic Models Problems, Progress and Plans

Gunter Folger Geant4 Workshop, Lisbon 2006

Contents

- Hadronic shower shape issue
- Microscopic studies, mostly QGS..
- Neutron production
- Cascades
- Other topics

Hadronic shower shape issue

- Energy resolution σ(E)/E well modeled by QGSP
- e/π Ratio described very well by QGSP
- LHEP slightly worse for $\sigma(E)/E$ and e/π
- Shower shape best described by LHEP
 - QGSP produces shorter showers starting early
 - Some indication for narrower showers as well
 - Difference is more pronounced at high energies

Atlas HEC

Slide by: A.Kiryunin (MPI Munich), Atlas Calibration workshop

Hadronic shower shape - Atlas

Atlas TileCal rotated by 90° - M. Simonyan MC and Data comparison

Good description at high energies.

Showers are too short.

11

How to solve this issue?

- Understand development of showers
 - particles important for energy deposit
 - Electrons ← pi0
 - particles important for shape
 - proton
- Verify models on thin target experiment
 - single interactions
 - Differential cross sections, angular distributions, ...
- Cross sections

QGS.. model

- QGSP and QGSC
 - Differ in 'nuclear de-excitation'
- Many comparisons to experiment at high energies (>100 GeV)
 - Rapidity, pt, Et, mulitiplicities
 - Much more data, including recent more precise data exist.

Examples...

More e.g. on http://cern.ch/gunter/thin_tgt

Rapidity distribution

Rapidity y=0.5 ln($(E+p_z)/(E-p_z)$)

Transverse momentum p_t pi+/pi- from proton (158GeV/c) on Carbon

Data NA49:

arXiv:hep-ex/0606028 v1

- Distribution for small
 x_F too narrow for
 - pi+ (left)
 - pi- (right)
- Too many pi- for high x_F

Pi0 production

- Pi0 production in
- Pi- (140 GeV/c) proton
- For various x_L
- p_T can be improved
- Low x_L excess at small p_T

Current Understanding

- QGS describes thin target data rather well
 - Transverse momentum too narrow
 - Opposite charge seems to be produced to much
 - Handling of diffractive scattering?
 - QGSC gives better description (too much?) of nuclear fragmentation compared to QGSP
- LHEP has peak structures in rapidity distributions
 - p_T distributions well agree with data
- More validation below 100 GeV needed
 - Only comparison is to HARP data @ 12GeV in very limited forward angles

Neutron Production from Cascades

- Bertini and Binary are low in simulating neutron fluence when simulating TARC (x4 / x6)
- Thin Target comparison
 - Proton (0.8-1.6 GeV) on ²⁰⁸Pb
 - Bertini produces too many neutrons
 - But comparing to isotope production at 1GeV, Bertini is about correct
 - Binary produces too few neutrons
 - And isotopes production confirms this.
- More tomorrow: Alex Howard,

Bertini cascade

- elastic interface was released first time, critical
 - bug fix was made.
- Early 2007
 - separate interfaces for Bertini sub models will be provided
 - Coulomb barrier issue clarified see talk by Aatos
 - optimized Bertini code talk by Michael Hannus

With Input provided by Aatos Heikkinen

INCL4+ABLA

- rewrite to Geant4 agreed in June with original authors.
- Translation started in September (now running in Fortran - C++ hybrid mode),
- first release hopefully in April 2007,
- full release late 2007 see talk by Pekka Kaitaniemi

Other topics & developments

- Revision of hadron elastic scattering
 - Cross section and final state generation
 - Talk by M.Kosov
- Review of hadron nucleus cross sections
 - Improved interpolation for inelastic pion cross sections used by QGS
 - artificial a few percent biasing of inelastic pion crosssections used by QGS for some elements (Copper)
- quasi-elastic
 - double counting LHEP Elastic,
- Coherent charge exchange model/process
- isotope selection

With Input provided by Mikhail Kosov and Vladimir Ivantchenko

Summary

- LHC experiments find hadronic showers are significantly too short using QGS.. physics lists
 - LHEP better, but worse in e/pi, response
- Understanding this issue is high priority
 - Looked at many distributions, reasonable agreement
 - Do we check the relevant distributions?
 - High statistic NA49 data is exception
 - Improve p_T distribution
 - Diffractive scattering ?
- Neutron production by cascade models needs improvement
 - Relevant for radiation background studies