Let's start with " >>> import Geant4"

A Geant4-Python Bridge

Practical Usage of Geant4Py

@ python

Koichi Murakami

Koichi Murakami
KEK / CRC

©

Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

Summary Report

. Geant4Py presented by Koichi
. Users comment by Michel

. Hot discussions

- Ana, John, John, Gabriele, Michel, Joseph, Fang,
Witold, Takashi, Vladimir, Koichi, Hajime,

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

Contents

B Installation notes

B Exposed classes/methods in usecases
B Wrapping out your applications

B Connection to analysis tools

B Examples

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

Geant4 global shared library

B Shared libraries are required because of dynamic binding.
v Any external libraries are also required to be built in shared libraries.

B Global libraries are required because Geant4Py does not
know which granular libraries are used in your application.

B How to build library
v You can co-work with “normal” granular static libraries.
setenv G4BUILD SHARED =1
setenv G4TMP = G4INSTALL/tmp-slib
setenv G4LIB = G4INSTALL/slib
make global

v Once the library is build, these environment variables are NOT
required any more in the Geant4Py side.

B Don’t forget to collect header files

¥ make includes

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

How to Build Geant4Py

B There is a configuration script for building the package.
v' configure --help shows more detailed options.

./configure linux
--with-g4-incdir=/opt/heplib/Geant4/geant4.8.1/include
--with-g4-1libdir=/opt/heplib/Geant4/geant4.8.1/slib/Linux-g++
--with-clhep-incdir=/opt/heplib/CLHEP/2.0.2.3/include
--with-clhep-1libdir=/opt/heplib/CLHEP/2.0.2.3/1ib
--with-clhep-1ib=CLHEP-2.0.2.3

B Practical comments for CLHEP deployment

v" In case of both libXXX.a and libXXX.so existing, linker will link with the
shared library.

» libCLHEP.a :link to libCLHEP-2.0.2.3.a
» libCLHEP.so -> remove it
» libCLHEP-2.0.2.3.s0 // use it in case of using shared library

B After executing configure script, you can go ahead to building procedures.

make
make install

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

Getting Started

B Set “PYTHONPATH?” to the library path

v setenv PYTHONPATH $ { PYTHONPATH} :"G4PY LIBPATH"” : "ROOT LIBPATH”

B Let’s try IPython
v IPython enforces the Python front end!

» support readline, command completion
— Python words/classes/functions/variables

v Let’s use “run xxx.py’ instead of
“execfile (“xxx.py”)”

v
v

B Importing module

>>> import Geant4 / from Geant4 import *

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

What is Exposed to Python

B Currently, over 100 classes over different categories are exposed to Python.
v' Classes for Geant4 managers
» G4RunManager, G4EventManager, ...
v Ul classes
» G4UlImanager, G4UIterminal, G4UIcommand, ...
v" Utility classes
» G4String, G4ThreeVector, G4RotationMatrix, ...
v Classes of base classes of user actions

» G4UserDetetorConstruction, G4UserPhysicsList,
» G4UserXXXAction

— PrimaryGenerator, Run, Event, Stepping,...
» can be inherited in Python side

v" Classes having information to be analyzed

» G4Step, G4Track, G4StepPoint, G4ParticleDefinition, ...
v" Classes for construction user inputs

» G4ParticleGun, G4Box, G4PVPlacement, ...

B NOT all methods are exposed.

v Only safe methods are exposed.
» Getting internal information are exposed.
» Some setter methods can easily break simulation results.

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

Global Variables/Functions

" __¢

B Some fg,lobal variables/functions starting with "g“ are
prede

v Smgheton objects / methods of singleton classes / static-like
methods

v Doubly instantiation is taken care. (Don’t worry.)

v" All of available visualization drivers (OpenGL, VRML, DAWN, ...)
are automatlcally registered.

v definedin“ init .py”

m hventMamger mgNistManager m gApplyUICommand()
B gStackMana ger WgLossTableManager B gGetCurrentValues()
m gTrackin ana or MgProductionCutsTable g eStartUISession()

[gSt t Mg ; mgEmCalculator B gControlExecute()

N gT an anta%?r MgVisManager B gCalculatePhoton
%45322519 ration MgMaterialTable CrossSection()
gParticleTable WgElementTable B gCalculateDEDX()
gProcessTable

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

UI commands / Ul session

B Geant4Py provides a bridge to G4UImanager.
v Keeping compatibility with current usability

B Ul Commands

v gApplyUICommand (“/xxx/xxx"”) allows to execute any G4UI
commands.

v" Current values can be obtained by
gGetCurrentValues (“/xxx/xxx") .
B Existing G4 macro files can be reused.

v gControlExecute (“macro file name”)

B Front end shell can be activated from Python

v gStartUISession() starts G4UIsession.
» g4py (Idle): // invoke a G4UI session
» when exit the session, go back to the Python front end

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

Your Modules / Your Implementations

B Your own classes can be exposed, and create your own
modules in the Boost-Python manner.

BOOST PYTHON MODULE (mymodule) {
class <MyApplication> ("MyApplication", "my application")
.def ("Configure", &MyApplication::Configure)

}

B Once an abstract class is exposed to Python, you can
implement/override its derived class in the Python side.

class MyRunAction (G4UserRunAction) :
“rMy Run Action”””
def BeginOfRunAction(self, run) :
print "*** fevent to be processed (BRA)=“, \
run.GetNumberOfEventToBeProcessed ()
def EndOfRunAction(self, zrun):
print "*** run end run(ERA)=", run.GetRunID ()

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

How to expose your applications

B ExNo3 setup as an example
v Each user component can be build as a Python module.

B Detector Construction
v site-modules/geometries/ExNo3geom/
B Physics List
v site-modules/physics_ lists/ExNo3pl/
B Primary Generator Action as particle gun

v site-modules/primaries/ParticleGun/
v’ reusable in most cases

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

Connection to Analysis Tools

B Analysis tools
v ROOT-Python interface

» plot example : examples/emplot/

» (online) histogram example:
— examples/demos/water_phantom/

» tree example:
— site-modules/utils/MCScore/

v PAIDA
» AIDA Python implementation
B Plotting tools i
v’ matplotlib

» histogramming interface (mathist) is in development.
— site-modules/utils/mathist

&
(54
10]
o]

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

Examples

B “tests/” directory contains some basic exampls
v test00-13: basic tests for Boost-Python

v gtestoi1:

» an example of wrapping out users application
— Python module of users C++ library

» Python inheritances of users actions
» Python implementation of magnetic field

v gtesto2: test for using site-module packages
» fully scripting
» combination of predefined modules

v gtesto3: test for EZsim package
» geometry construction using EZgeom module

v gtestog : test for getting command tree and command
information

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

more Example — in examples/

B demos/water_phantom/

v This demo program shows that a Geant4 application coworks
with ROOT on the Python front end.

B education/lessoni/2
v' GUI example for educational uses

B emplot/ =
v' photon cross sections/electron itopping power |
v' using EZgeom s '—T] peamim)

B hadrontest/
v’ proton/neutron/pion production
v using EZgeom
v store MC information (histogram/F

[Mubtipticity | proton 1.0 eV @ G4, I
.

Photon Cross Section (G4_Pb

- Stopping Power (G4 Cu) |

Geant4 Users Conference — LIP / Lisboa
(9/0ct./2006)

Yet Another Way to Create Geometry

B “EZgeom” module provides an easy way to create simple
users geometries;

v' structure of geometry construction is hidden;
» Solid/Logical Volume/World Volume
» “EZvolume” is the only gateway to a physical volume from users side.

v’ automatic creation of the world volume
» volume size should be cared.

v' creating CSG-solid volumes (Box, Tube, Sphere, ...)
v' changing volume materials

v' creating nested volumes
» placing a volume in the world by default

v' creating replicas / voxelizing BOX volumes
v’ setting detector sensitivities
v’ setting visualization attributes

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

import NISTmaterials
from EZsim import EZgeom
from EZsim.EZgeom import G4EzVolume

NISTmaterials.Construct ()

set DetectorConstruction to the RunManager >
>
EZgeom.Construct () =

reset world material
air= gNistManager.FindOrBuildMaterial ("G4 AIR")
EZgeom.SetWorldMaterial (air)

dummy box

detector box=G4EzVolume ("DetectorBox")

detector box.CreateBoxVolume (air, 20.*cm, 20.*cm, 40.*cm)
detector box pv=

detector box.PlacelIt (G4ThreeVector(0.,0.,20.*cm))

calorimeter placed inside the box
cal= G4EzVolume ("Calorimeter")
nai= gNistManager.FindOrBuildMaterial ("G4 SODIUM IODIDE")
cal.CreateBoxVolume (nai, 5.*cm, 5.*cm, 30.*cm)
dd= 5.*cm
for ical in range (-1, 2):
calPos= G4ThreeVector (dd*ical, 0., 0.)
cal.PlaceIt (calPos, ical+l, detector box)

Koichi Murakami Geant4 Users Conference — LIP / Lisboa

(9/0ct./2006)

« a toolkit, easy to use, which allows him to built
his own interactive Geant4 application
* easy = by non-expert
remark 1 : an interactive application include
necessarely visualization and analysis tool

remark 2 : the graphical interactive mode must
be compatible with more ‘classical’ approach :
commands line or batch
» Compatibility of libraries
remark 3 : the toolkit itself must be easy to
install

« a toolkit, easy to use, which allows him to built
his own interactive Geant4 application
* easy = by non-expert
remark 1 : an interactive application include
necessarely visualization and analysis tool

remark 2 : the graphical interactive mode must
be compatible with more ‘classical’ approach :
commands line or batch
» Compatibility of libraries
remark 3 : the toolkit itself must be easy to
install

