
Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

Practical Usage of Geant4PyPractical Usage of Geant4Py

Koichi Murakami

KEK / CRC

Let's start with " >>> import Geant4"
A Geant4-Python Bridge

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

Summary ReportSummary Report

● Geant4Py presented by Koichi

● Users comment by Michel

● Hot discussions

− Ana, John, John, Gabriele, Michel, Joseph, Fang,
Witold, Takashi, Vladimir, Koichi, Hajime,

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

3

ContentsContents

Installation notes

Exposed classes/methods in usecases

Wrapping out your applications

Connection to analysis tools

Examples

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

4

Geant4 global shared libraryGeant4 global shared library

Shared libraries are required because of dynamic binding.
Any external libraries are also required to be built in shared libraries.

Global libraries are required because Geant4Py does not
know which granular libraries are used in your application.

How to build library
You can co-work with “normal” granular static libraries.
setenv G4BUILD_SHARED =1

setenv G4TMP = G4INSTALL/tmp-slib

setenv G4LIB = G4INSTALL/slib

make global

Once the library is build, these environment variables are NOT
required any more in the Geant4Py side.

Don’t forget to collect header files
make includes

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

5

How to Build Geant4PyHow to Build Geant4Py

There is a configuration script for building the package.
configure --help shows more detailed options.

Practical comments for CLHEP deployment
In case of both libXXX.a and libXXX.so existing, linker will link with the
shared library.

» libCLHEP.a : link to libCLHEP-2.0.2.3.a
» libCLHEP.so -> remove it
» libCLHEP-2.0.2.3.so // use it in case of using shared library

After executing configure script, you can go ahead to building procedures.
make
make install

./configure linux
--with-g4-incdir=/opt/heplib/Geant4/geant4.8.1/include
--with-g4-libdir=/opt/heplib/Geant4/geant4.8.1/slib/Linux-g++
--with-clhep-incdir=/opt/heplib/CLHEP/2.0.2.3/include
--with-clhep-libdir=/opt/heplib/CLHEP/2.0.2.3/lib
--with-clhep-lib=CLHEP-2.0.2.3

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

6

Getting StartedGetting Started

Set “PYTHONPATH” to the library path
setenv PYTHONPATH ${PYTHONPATH}:”G4PY_LIBPATH”:”ROOT_LIBPATH”

Let’s try IPython
IPython enforces the Python front end!

» support readline, command completion
―Python words/classes/functions/variables

Let’s use “run xxx.py” instead of
“execfile(“xxx.py”)”.
http://ipython.scipy.org/

Importing module
>>> import Geant4 / from Geant4 import *

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

7

Currently, over 100 classes over different categories are exposed to Python.
Classes for Geant4 managers

» G4RunManager, G4EventManager, …
UI classes

» G4UImanager, G4UIterminal, G4UIcommand, …
Utility classes

» G4String, G4ThreeVector, G4RotationMatrix, ...
Classes of base classes of user actions

» G4UserDetetorConstruction, G4UserPhysicsList,
» G4UserXXXAction

― PrimaryGenerator, Run, Event, Stepping,...
» can be inherited in Python side

Classes having information to be analyzed
» G4Step, G4Track, G4StepPoint, G4ParticleDefinition, ...

Classes for construction user inputs
» G4ParticleGun, G4Box, G4PVPlacement, ...

NOT all methods are exposed.
Only safe methods are exposed.

» Getting internal information are exposed.
» Some setter methods can easily break simulation results.

What is Exposed to PythonWhat is Exposed to Python

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

8

Global Variables/FunctionsGlobal Variables/Functions

Some global variables/functions starting with "g“ are
predefined;

Singleton objects / methods of singleton classes / static-like
methods
Doubly instantiation is taken care. (Don’t worry.)
All of available visualization drivers (OpenGL, VRML, DAWN, ...)
are automatically registered.
defined in “__init__.py”

gRunManager
gEventManager
gStackManager
gTrackingManager
gStateManager
gTransportation
Manager
gParticleTable
gProcessTable

gApplyUICommand()
gGetCurrentValues()
gStartUISession()
gControlExecute()
gCalculatePhoton
CrossSection()
gCalculateDEDX()

gNistManager
gLossTableManager
gProductionCutsTable
gEmCalculator
gVisManager
gMaterialTable
gElementTable

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

9

UI commands / UI sessionUI commands / UI session

Geant4Py provides a bridge to G4UImanager.
Keeping compatibility with current usability

UI Commands
gApplyUICommand(“/xxx/xxx”) allows to execute any G4UI
commands.

Current values can be obtained by
gGetCurrentValues(“/xxx/xxx”).

Existing G4 macro files can be reused.
gControlExecute(“macro_file_name”)

Front end shell can be activated from Python
gStartUISession() starts G4UIsession.

» g4py(Idle): // invoke a G4UI session

» when exit the session, go back to the Python front end

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

10

Your Modules / Your ImplementationsYour Modules / Your Implementations

Your own classes can be exposed, and create your own
modules in the Boost-Python manner.

Once an abstract class is exposed to Python, you can
implement/override its derived class in the Python side.

BOOST_PYTHON_MODULE(mymodule){
class_<MyApplication>("MyApplication", "my application")

.def("Configure", &MyApplication::Configure)
;

}

class MyRunAction(G4UserRunAction):
“””My Run Action”””
def BeginOfRunAction(self, run):

print "*** #event to be processed (BRA)=“, \
run.GetNumberOfEventToBeProcessed()

def EndOfRunAction(self, run):
print "*** run end run(ERA)=", run.GetRunID()

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

11

How to expose your applicationsHow to expose your applications

ExN03 setup as an example
Each user component can be build as a Python module.

Detector Construction
site-modules/geometries/ExN03geom/

Physics List
site-modules/physics_lists/ExN03pl/

Primary Generator Action as particle gun
site-modules/primaries/ParticleGun/

reusable in most cases

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

12

Connection to Analysis Tools Connection to Analysis Tools

Analysis tools
ROOT-Python interface

» plot example : examples/emplot/

» (online) histogram example:
―examples/demos/water_phantom/

» tree example:
― site-modules/utils/MCScore/

PAIDA
» AIDA Python implementation

Plotting tools
matplotlib

» histogramming interface (mathist) is in development.
― site-modules/utils/mathist

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

13

ExamplesExamples

“tests/” directory contains some basic exampls
test00-13: basic tests for Boost-Python
gtest01:

» an example of wrapping out users application
―Python module of users C++ library

» Python inheritances of users actions
» Python implementation of magnetic field

gtest02: test for using site-module packages
» fully scripting
» combination of predefined modules

gtest03: test for EZsim package
» geometry construction using EZgeom module

gtest04 : test for getting command tree and command
information

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

14

more Example more Example –– in examples/in examples/

demos/water_phantom/
This demo program shows that a Geant4 application coworks
with ROOT on the Python front end.

education/lesson1/2
GUI example for educational uses

emplot/
photon cross sections/electron stopping power
using EZgeom

hadrontest/
proton/neutron/pion production
using EZgeom
store MC information (histogram/ROOT tree/TXT)

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

15

Yet Another Way to Create GeometryYet Another Way to Create Geometry

“EZgeom” module provides an easy way to create simple
users geometries;

structure of geometry construction is hidden;
» Solid/Logical Volume/World Volume

» “EZvolume” is the only gateway to a physical volume from users side.

automatic creation of the world volume
» volume size should be cared.

creating CSG-solid volumes (Box, Tube, Sphere, …)

changing volume materials

creating nested volumes
» placing a volume in the world by default

creating replicas / voxelizing BOX volumes

setting detector sensitivities

setting visualization attributes

Koichi Murakami Geant4 Users Conference – LIP / Lisboa
(9/Oct./2006)

16

Example of using EZgeom packageExample of using EZgeom package
import NISTmaterials
from EZsim import EZgeom
from EZsim.EZgeom import G4EzVolume

NISTmaterials.Construct()
set DetectorConstruction to the RunManager
EZgeom.Construct()

reset world material
air= gNistManager.FindOrBuildMaterial("G4_AIR")
EZgeom.SetWorldMaterial(air)

dummy box
detector_box=G4EzVolume("DetectorBox")
detector_box.CreateBoxVolume(air, 20.*cm, 20.*cm, 40.*cm)
detector_box_pv=
detector_box.PlaceIt(G4ThreeVector(0.,0.,20.*cm))

calorimeter placed inside the box
cal= G4EzVolume("Calorimeter")
nai= gNistManager.FindOrBuildMaterial("G4_SODIUM_IODIDE")
cal.CreateBoxVolume(nai, 5.*cm, 5.*cm, 30.*cm)
dd= 5.*cm
for ical in range(-1, 2):

calPos= G4ThreeVector(dd*ical, 0., 0.)
cal.PlaceIt(calPos, ical+1, detector_box)

0 21

less than 20 lines!!

17

What a user expects from a graphical interface ?What a user expects from a graphical interface ?

• a toolkit, easy to use, which allows him to built
his own interactive Geant4 application
• easy = by non-expert

remark 1 : an interactive application include
necessarely visualization and analysis tool

remark 2 : the graphical interactive mode must
be compatible with more ‘classical’ approach :
commands line or batch
• Compatibility of libraries

remark 3 : the toolkit itself must be easy to
install

18

What a user expects from a graphical interface ?What a user expects from a graphical interface ?

• a toolkit, easy to use, which allows him to built
his own interactive Geant4 application
• easy = by non-expert

remark 1 : an interactive application include
necessarely visualization and analysis tool

remark 2 : the graphical interactive mode must
be compatible with more ‘classical’ approach :
commands line or batch
• Compatibility of libraries

remark 3 : the toolkit itself must be easy to
install

