Proton/Ion Bragg Peak Validation

A.Bagulya³, I.Gudowska⁴, V.Ivanchenko^{1,2} and N.Starkov³

- ¹ CERN, Geneva, Switzerland
- ² EMSU, Moscow, Russia
- ³ Lebedev Physics Institute, Moscow, Russia
- ⁴ Karolinska Institutet and Stockholm University, Stockholm, Sweden

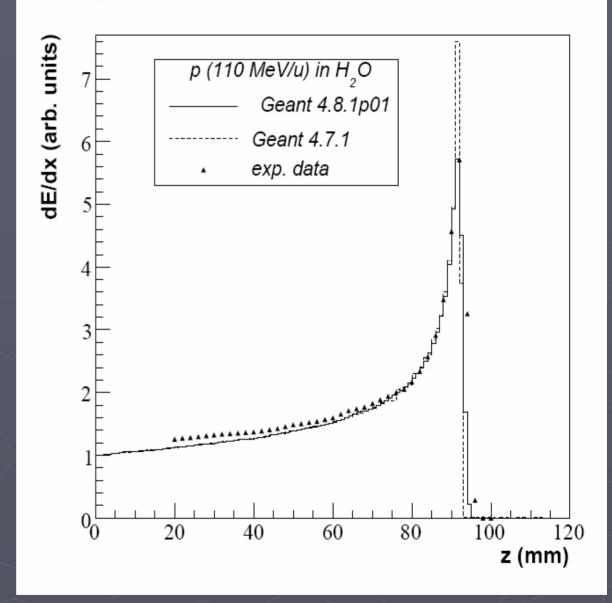
Introduction

- ► The verification of Bragg peak simulation was carried out for different proton/ion beams in water phantom
- The special application IION have been developed
- ► The results were reported in Bordeaux
 - Results indicates number of problems in 7.1

2

Hadr01

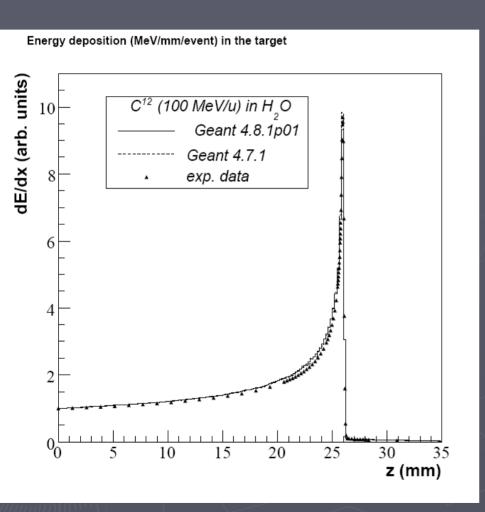
- ► The IION application was transformed to first extended example Hadr01 and released with G4 8.1
- ► Hadr01 is used for systematic control on Bragg peak


Simulation Conditions

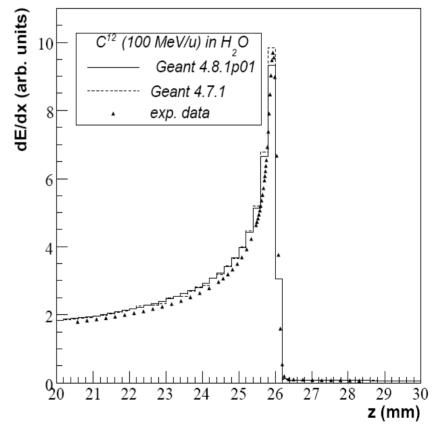
- ► QGSP_BIC Physics List
- ▶ 0.1 mm cuts
- ≥ 30 cm cylindrical water target
- Selected set of beams with data available
 - Proton 110 MeV
 - He4 144.3 MeV/u
 - C12 100 MeV/u

Protons

- Data are shifted for 1 mm
- Bragg peak shape is much more closed to data for 8.1
- Effect of elastic scattering model upgrade and stopping power upgrade


He4

- Data are not shifted
- Bragg peak shape is much more closed to data for 8.1
- Effect of elastic scattering model upgrade and stopping power upgrade



C12 in water (data shifted for 0.2 mm)

Conclusions

- Recent upgrades improve Bragg peak simulation
 - Maximum effect on protons because of elastic scattering upgrade
- ▶ Not absolute coincidence simulation/data
 - Systematic should be better understood
- ► The routine procedure of control on Bragg peak is established
 - Will be move to EM validation suite