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RG Flow from UV to IR; Types of IR Behavior and Role
of IR Fixed Point

Consider an asymptotically free, vectorial gauge theory with gauge group G and Nf

massless fermions in representation R of G.

Asymptotic freedom ⇒ theory is weakly coupled, properties are perturbatively
calculable for large Euclidean momentum scale µ in deep ultraviolet (UV).

The question of how this theory flows from large µ in the UV to small µ in the infrared
(IR) is of fundamental field-theoretic interest.

For some fermion contents, the theory may have an exact or approximate IR fixed point
(zero of β).

Denote running gauge coupling at scale µ as g = g(µ), and let
α(µ) = g(µ)2/(4π) and a(µ) = g(µ)2/(16π2) = α(µ)/(4π).



The dependence of α(µ) on µ is described by the renormalization group β function

βα ≡ dα

dt
= −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓα
ℓ ,

where t = lnµ, ℓ = loop order of the coeff. bℓ, and b̄ℓ = bℓ/(4π)ℓ.

Coefficients b1 and b2 in β are independent of regularization/renormalization scheme,
while bℓ for ℓ ≥ 3 are scheme-dependent.

Asymptotic freedom means b1 > 0, so β < 0 for small α(µ), in neighborhood of UV
fixed point (UVFP) at α = 0.

As the scale µ decreases from large values, α(µ) increases. Denote αcr as minimum
value for formation of bilinear fermion condensates and resultant spontaneous chiral
symmetry breaking (SχSB).



Two generic possibilities for β and resultant UV to IR flow:

• β has no IR zero, so as µ decreases, α(µ) increases, eventually beyond the
perturbatively calculable region. This is the case for QCD.

• β has a IR zero, αIR, so as µ decreases, α → αIR. In this class of theories, there
are two further generic possibilities: αIR < αcr or αIR > αcr.

If αIR < αcr, the zero of β at αIR is an exact IR fixed point (IRFP) of the renorm.
group (RG) as µ → 0 and α → αIR, β → β(αIR) = 0, and the theory becomes
exactly scale-invariant with nontrivial anomalous dimensions (Caswell, Banks-Zaks).

If β has no IR zero, or an IR zero at αIR > αcr, then as µ decreases through a scale
Λ, α(µ) exceeds αcr and SχSB occurs, so fermions gain dynamical masses ∼ Λ.

If SχSB occurs, then in low-energy effective field theory applicable for µ < Λ, one
integrates these fermions out, and β fn. becomes that of a pure gauge theory, with no
IR zero. Hence, if β has a zero at αIR > αcr, this is only an approx. IRFP of RG.



If αIR is only slightly greater than αcr, then, as α(µ) approaches αIR, since
β = dα/dt → 0, α(µ) varies very slowly as a function of the scale µ, i.e., there is
approximately scale-invariant (= dilatation-invariant, walking) behavior.

SχSB at Λ also breaks the approx. dilatation symmetry, might lead to a resultant
approx. NGB, the dilaton. This is not massless, since β(αcr) is nonzero (Yamawaki et
al., Appelquist, Wijewardhana.., Holdom, Terning...).

Denote the n-loop β fn. as βnℓ and the IR zero of βnℓ as αIR,nℓ.

At the n = 2 loop level,

αIR,2ℓ = −4πb1

b2

which is physical for b2 < 0. One-loop coefficient b1 is (Wilczek, Gross, Politzer)

b1 =
1

3
(11CA − 4NfTf)

where CA ≡ C2(G) is quadratic Casimir invariant, Tf ≡ T (R) is trace invariant.
Focus here on G = SU(Nc).



Asymp. freedom requires Nf < Nf,b1z, where

Nf,b1z =
11CA

4Tf

e.g., for R = fundamental rep., Nf < (11/2)Nc.

Two-loop coeff. b2 is (with Cf ≡ C2(R)) (Caswell, Jones)

b2 =
1

3

[

34C2
A − 4(5CA + 3Cf)Nf Tf

]

For small Nf , b2 > 0; b2 decreases as fn. of Nf and vanishes with sign reversal at
Nf = Nf,b2z, where

Nf,b2z =
34C2

A

4Tf(5CA + 3Cf)

For arbitrary G and R, Nf,b2z < Nf,b1z, so there is always an interval in Nf for
which β has an IR zero, namely

I : Nf,b2z < Nf < Nf,b1z



• for SU(2), I: 5.55 < Nf < 11

• for SU(3), I: 8.05 < Nf < 16.5

• As Nc → ∞, I: 2.62Nc < Nf < 5.5Nc.

(expressions evaluated for Nf ∈ R, but it is understood that physical values of Nf are
nonnegative integers.)

As Nf decreases from the upper to lower end of interval I, αIR increases. Denote

Nf = Nf,cr at αIR = αcr

Value of Nf,cr is of fundamental importance, since it separates the (zero-temp.)
chirally symmetric and broken IR phases.

Intensive current lattice studies of SU(Nc) gauge theories with Nf copies of fermions
in various representations R; progress toward determining Nf,cr for various Nc and R.



Higher-Loop Corrections to UV → IR Evolution of Gauge
Theories

Because of this strong-coupling physics, one should calculate the IR zero in β, αIR,
and resultant value of γm evaluated at αIR to higher-loop order (Ryttov and Shrock,
PRD83, 056011 (2011) [arXiv:1011.4542] and Pica and Sannino, PRD83, 035013
(2011) [arXiv:1011.5917]; related work by Gardi, Grunberg, Karliner).

Although coeffs. in β at ℓ ≥ 3 loop order are scheme-dependent, results give a
measure of accuracy of the 2-loop calc. of the IR zero of β, and similarly with γm
evaluated at this IR zero.

Make use of calculation of β and γm up to 4-loops in MS scheme by Vermaseren,
Larin, and van Ritbergen.

The value of higher-loop calculations has been amply shown in comparison of QCD
predictions with experimental data, e.g., in MS scheme.



Values of b̄ℓ = bℓ/(4π)ℓ for 0 ≤ Nf < Nf,b1z and illustrative values of Nc; for
Nc = 2, interval I, Nf,b2z < Nf < Nf,b1z, is 5.55 < Nf < 11:

Nc Nf b̄1 b̄2 b̄3 b̄4

2 0 0.584 0.287 0.213 0.268
2 1 0.5305 0.235 0.154 0.191
2 2 0.477 0.184 0.099 0.127
2 3 0.424 0.132 0.047 0.078
2 4 0.371 0.080 −0.0003 0.044
2 5 0.318 0.0385 −0.044 0.024
2 6 0.265 −0.023 −0.084 0.020
2 7 0.212 −0.075 −0.120 0.030
2 8 0.159 −0.127 −0.152 0.057
2 9 0.106 −0.178 −0.180 0.099
2 10 0.053 −0.230 −0.205 0.156



For Nc = 3, interval I, Nf,b2z < Nf < Nf,b1z, is 8.05 < Nf < 16.5; values of
b̄ℓ:

Nc Nf b̄1 b̄2 b̄3 b̄4

3 0 0.875 0.646 0.720 1.173
3 1 0.822 0.566 0.582 0.910
3 2 0.769 0.485 0.450 0.681
3 3 0.716 0.405 0.324 0.485
3 4 0.663 0.325 0.205 0.322
3 5 0.610 0.245 0.091 0.194
3 6 0.557 0.165 −0.016 0.099
3 7 0.504 0.084 −0.118 0.039
3 8 0.451 0.004 −0.213 0.015
3 9 0.398 −0.076 −0.303 0.025
3 10 0.345 −0.156 −0.386 0.072
3 11 0.292 −0.236 −0.463 0.154
3 12 0.239 −0.317 −0.534 0.273
3 13 0.186 −0.397 −0.599 0.429
3 14 0.133 −0.477 −0.658 0.622
3 15 0.080 −0.557 −0.711 0.852
3 16 0.0265 −0.637 −0.758 1.121



3-loop coefficient in β function (in MS scheme):

b3 =
2857

54
C3
A + TfNf

[

2C2
f − 205

9
CACf − 1415

27
C2
A

]

+(TfNf)
2

[

44

9
Cf +

158

27
CA

]

Here, b3 < 0 for Nf ∈ I. Since β3ℓ = −[α2/(2π)](b1 + b2a+ b3a
2), β3ℓ = 0

away from α = 0 at two values:

α =
2π

b3

(

− b2 ±
√

b2
2 − 4b1b3

)

Since b2 < 0 and b3 < 0, can rewrite as

α =
2π

|b3|
(

− |b2| ∓
√

b2
2 + 4b1|b3|

)

Soln. with − sqrt is negative, hence unphysical; soln. with + sqrt is αIR,3ℓ.



We showed that with b3 < 0 the value of the IR zero decreases when calculated at the
3-loop level, i.e.,

αIR,3ℓ < αIR,2ℓ

This can be seen as follows:

αIR,2ℓ − αIR,3ℓ =
4πb1

|b2|
− 2π

|b3|
(

− |b2| +
√

b2
2 + 4b1|b3|

)

=
2π

|b2b3|

[

2b1|b3| + b2
2 − |b2|

√

b2
2 + 4b1|b3|

]

The expression in square brackets is positive if and only if

(2b1|b3| + b2
2)

2 − b2
2(b

2
2 + 4b1|b3|) > 0

This difference is equal to the positive-definite quantity 4b2
1b

2
3, which proves the

inequality.



In RS, Phys. Rev. D 87, 105005 (2013) [arXiv:1301.3209] we have generalized this.

If a scheme had b3 > 0 in I, then, since b2 → 0 at lower end of I, b2
2 − 4b1b3 < 0,

so this scheme would not have a physical αIR,3ℓ in this region.

Since the existence of the IR zero in β at 2-loop level is scheme-independent, one may
require that a scheme should maintain this property to higher-loop order, and hence
that b3 < 0 for Nf ∈ I.

So the inequality αIR,3ℓ < αIR,2ℓ holds in all such schemes, not just in MS.

The 4-loop β function is β = −[α2/(2π)](b1 + b2a+ b3a
2 + b4a

3), so β4ℓ has
three zeros away from α = 0; smallest (real positive) one as αIR,4ℓ.

We give an analysis of the zeros of β4ℓ in a general scheme in RS, Phys. Rev. D 87,
105005 (2013) [arXiv:1301.3209]. With MS, from 3- to 4-loop level, slight increase:

αIR,4ℓ >∼ αIR,3ℓ; small change, so overall, αIR,4ℓ < αIR,2ℓ.

Our result of smaller fractional change in value of IR zero of β at higher-loop order
agrees with expectation that calc. to higher loop order should give more stable result.



Numerical values of αIR,nℓ at the n = 2, 3, 4 loop level for SU(2), SU(3) and
fermions in fund. rep., with n = 3, 4 terms in β function in MS scheme:

Nc Nf αIR,2ℓ αIR,3ℓ αIR,4ℓ
2 6 11.42 1.645 2.395
2 7 2.83 1.05 1.21
2 8 1.26 0.688 0.760
2 9 0.595 0.418 0.444
2 10 0.231 0.196 0.200

3 10 2.21 0.764 0.815
3 11 1.23 0.578 0.626
3 12 0.754 0.435 0.470
3 13 0.468 0.317 0.337
3 14 0.278 0.215 0.224
3 15 0.143 0.123 0.126
3 16 0.0416 0.0397 0.0398

(Perturbative calc. not applicable if αIR,nℓ too large.) We have performed the
corresponding higher-loop calculations for SU(Nc) gauge theories with Nf fermions in
the adjoint, symmetric and antisymmetric rank-2 tensor representations.



We prove a general result on the shift of an IR zero of β when calculated at next higher
order: assume fermion content is such that b2 < 0, so theory has a 2-loop IR zero (RS,
PRD 87, 105005 (2013) [arXiv:1301.3209]).

Consider a scheme in which the bℓ with ℓ = 3, ..., n+ 1 have values that preserve the
existence of the scheme-independent 2-loop IR zero of β at higher-loop level
(motivated physically).

Use fact that theory is asymptotically free, so β < 0 for 0 < α < αIR, and hence
dβnℓ/dα > 0 for α ≃ αIR,nℓ.

Expand βnℓ in Taylor series around α = αIR,nℓ:

βnℓ = β′
IR,nℓ (α− αIR,nℓ) + O

(

(α− αIR,nℓ)
2
)

Now calculate β to the next-higher-loop order, i.e., β(n+1)ℓ, and solve for αIR,(n+1)ℓ.
To determine whether αIR,(n+1)ℓ is larger or smaller than αIR,nℓ, consider

β(n+1)ℓ − βnℓ = −2b̄n+1α
n+2



In a scheme where bn+1 > 0, this difference, evaluated at α = αIR,nℓ, is negative,
so, given that dβnℓ/dα|αIR,nℓ > 0, to compensate for this, the zero shifts to the
right, whereas if bn+1 < 0, the difference is positive, so the zero shifts to the left.

If bn+1 > 0 , then αIR,(n+1)ℓ > αIR,nℓ

If bn+1 < 0 , then αIR,(n+1)ℓ < αIR,nℓ

This general result is evident in our MS calculations.

b3 < 0, =⇒ αIR,3ℓ < αIR,2ℓ

b4 > 0, =⇒ αIR,4ℓ > αIR,3ℓ



It is of interest to calculate the anomalous dimension γm ≡ γ for the fermion bilinear,
with series expansion

γ =
∞
∑

ℓ=1

cℓa
ℓ =

∞
∑

ℓ=1

c̄ℓα
ℓ

where c̄ℓ = cℓ/(4π)ℓ is the ℓ-loop coefficient.

The one-loop coeff. c1 is scheme-independent, the cℓ with ℓ ≥ 2 are
scheme-dependent and have been calculated up to 4-loop level in MS scheme
(Vermaseren, Larin, and van Ritbergen): c1 = 6Cf ,

c2 = 2Cf

[3

2
Cf +

97

6
CA − 10

3
TfNf

]

c3 = 2Cf

[

129

2
C2
f − 129

4
CfCA +

11413

108
C2
A

+CfTfNf(−46 + 48ζ(3)) − CATfNf(
556

27
+ 48ζ(3))

−140

27
(TfNf)

2

]

and similarly for c4, where ζ(s) =
∑∞

n=1n
−s and ζ(3) = 1.202..



Some numerical values of c̄ℓ for illustrative values of Nc; for Nc = 2:

Nc Nf c̄1 c̄2 c̄3 c̄4
2 1 0.358 0.302 0.254 0.234
2 2 0.358 0.286 0.195 0.143
2 3 0.358 0.270 0.134 0.0577
2 4 0.358 0.254 0.0712 −0.0218
2 5 0.358 0.239 0.00656 −0.0952
2 6 0.358 0.223 −0.0601 −0.162
2 7 0.358 0.207 −0.129 −0.222
2 8 0.358 0.191 −0.199 −0.274
2 9 0.358 0.175 −0.272 −0.319
2 10 0.358 0.1595 −0.346 −0.355



For Nc = 3, the c̄ℓ are:

Nc Nf c̄1 c̄2 c̄3 c̄4
3 1 0.637 0.825 1.11 1.64
3 2 0.637 0.796 0.957 1.27
3 3 0.637 0.768 0.801 0.909
3 4 0.637 0.740 0.642 0.561
3 5 0.637 0.712 0.479 0.227
3 6 0.637 0.684 0.312 −0.0926
3 7 0.637 0.656 0.142 −0.396
3 8 0.637 0.628 −0.0313 −0.683
3 9 0.637 0.599 −0.208 −0.953
3 10 0.637 0.571 −0.389 −1.21
3 11 0.637 0.543 −0.573 −1.44
3 12 0.637 0.515 −0.760 −1.65
3 13 0.637 0.487 −0.951 −1.85
3 14 0.637 0.459 −1.145 −2.02
3 15 0.637 0.431 −1.34 −2.18
3 16 0.637 0.402 −1.54 −2.31



Denote γ calculated to n-loop (nℓ) level as γnℓ and, evaluated at the n-loop value of
the IR zero of β, as

γIR,nℓ ≡ γnℓ(α = αIR,nℓ)

In the IR chirally symmetric phase, an all-order calculation of γ evaluated at an
all-order calculation of αIR would be an exact property of the theory.

In the chirally broken phase, just as the IR zero of β is only an approx. IRFP, so also,
the γ is only approx., describing the running of ψ̄ψ and the dynamically generated
running fermion mass near the zero of β having large-momentum (large k) behavior

Σ(k) ∼ Λ

(

Λ

k

)2−γ

where γ is bounded above as γ < 2. Schwinger-Dyson estimates suggest γ could be
∼ 1 in walking regime with SχSB (Yamawaki et al., Appelquist, Wijewardhana..Lane).
The upper bound γ < 2 also holds for the chirally symmetric conformal IR phase; from
a unitarity argument (Mack), dim(ψ̄ψ) = 3 − γm > 1, so γ < 2.



At the 2-loop level we calculate

γIR,2ℓ =
Cf(11CA − 4TfNf)[455C2

A + 99CACf + (180Cf − 248CA)TfNf + 80(TfNf)
2]

12[−17C2
A + 2(5CA + 3Cf)TfNf ]2

Our analytic expressions for γIR,nℓ at the 3-loop and 4-loop level are more complicated.



Illustrative numerical values of γIR,nℓ for SU(2) and SU(3) at the n = 2, 3, 4 loop
level and fermions in the fundamental representation with Nf ∈ I:

Nc Nf γIR,2ℓ γIR,3ℓ γIR,4ℓ
2 7 (2.67) 0.457 0.0325
2 8 0.752 0.272 0.204
2 9 0.275 0.161 0.157
2 10 0.0910 0.0738 0.0748

3 10 (4.19) 0.647 0.156
3 11 1.61 0.439 0.250
3 12 0.773 0.312 0.253
3 13 0.404 0.220 0.210
3 14 0.212 0.146 0.147
3 15 0.0997 0.0826 0.0836
3 16 0.0272 0.0258 0.0259

Plots of γ as function of Nf for SU(2) and SU(3):



Figure 1: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(2) with Nf fermions in fund. rep. (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



Figure 2: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(3) with Nf fermions in fund. rep: (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



A necessary condition for a perturbative calculation to be reliable is that higher-order
contributions do not modify the result too much. We find that the 3-loop and 4-loop
results are closer to each other for a larger range of Nf than the 2-loop and 3-loop
results.

We have also done higher-loop calcs. for a supersymmetric gauge theory in Ryttov and
Shrock, PRD 85, 076009 (2012) [arXiv:1202.1297].

So our higher-loop calcs. of αIR and γ allow us to probe the theory reliably down to
smaller values of Nf and thus stronger couplings, closer to Nf,cr. Of course,
perturbative calculations are not applicable when α is too large.

We have performed these higher-loop calculations for larger fermion reps. R. In
general, we find that, for a given Nc, R, and Nf , the values of γIR,nℓ calculated to
3-loop and 4-loop order are smaller than the 2-loop value.



Comparisons with Lattice Measurements

We compare these calculations with lattice measurements here.

N.B.: for some theories with given gauge group and fermion content, there is not yet a
consensus as to whether the theory is chirally symmetric or chirally broken in the IR.

One of the most heavily studied cases on the lattice is for the gauge group SU(3) with
Nf = 12 fermions in the fundamental representation (with extrapolations to the
continuum limit and to massless fermions):

For this theory, Appelquist et al. (LSD); Deuzeman et al; Hasenfratz et al.; DeGrand et
al.; Aoki et al. find that the IR behavior is chirally symmetric, while Jin and Mawhinney
and Kuti et al. find that it is chirally broken.

For this SU(3) theory with Nf = 12, our calculations give

γIR,2ℓ = 0.77, γIR,3ℓ = 0.31, γIR,4ℓ = 0.25



some lattice results (N.B. - error estimates do not include all systematic uncertainties):

γ = 0.414 ± 0.016 (Appelquist et al., PRD 84, 054501 (2011) [arXiv:1106.2148])

γ ∼ 0.35 (DeGrand, PRD 84, 116901 (2011) [arXiv:1109.1237])

0.2 <∼ γ <∼ 0.4 (Kuti et al. (method-dep.) arXiv:1205.1878, arXiv:1211.3548,
1211.6164, PTP, finding SχSB)

γ = 0.4 − 0.5 (Y. Aoki et al., (LatKMI) PRD 86, 054506 (2012) [arXiv:1207.3060])

γ = 0.27(3) (Hasenfratz et al., arXiv:1207.7162; γ = 0.32(3), arXiv:1301.1355)

So here the 2-loop value is larger than, and the 3-loop and 4-loop values closer to,
these lattice measurements.

Thus, our higher-loop calculations of γ yield better agreement with these lattice
measurements than two-loop calculations.



SU(Nc) with fermions in fund. rep. and other Nf values:

SU(3) with Nf = 10: Appelquist et al., arXiv:1204.6000 get γIR ∼ 1

SU(3) with Nf = 8, presumably in chirally broken phase; studied by several groups,
including LSD group, Appelquist et al., arXiv:1405.4752; LatKMI group, Aoki,...
Kurachi et al. PRD 87, 094511 (2013) [arXiv:1302.6859]; get γIR ∼ 1.

SU(2): Nf = 6: Bursa et al., PRD 84, 034506 (2011) [arXiv:1104.4301]; Tuominen et
al., JHEP 1205, 003 (2012) [arXiv:1111.4104]; Hayakawa,..Yamada et al.,
arXiv:1210.4985; PRD88, 094606, 094504, (2013) [arXiv:1307.6696], [arXiv:1307.6997];
T. Appelquist et al., PRL 112, 111601 (2014) (2014) [arXiv:1311.4889]; no consensus
yet as to whether this theory has IR chirally symmetric or broken behavior.

Lattice results are consistent with γIR ∼ 1 in quasi-scale invariant (walking) regime of
chirally broken phase. For these theories, the coupling is probably too strong for
perturbative methods to be accurate.



For SU(Nc) with fermions in adjoint rep., interval I has only Nf = 2; we calculate

Nc Nf γIR,2ℓ,adj γIR,3ℓ,adj γIR,4ℓ,adj
2 2 0.820 0.543 0.500
3 2 0.820 0.543 0.523
4 2 0.820 0.543 0.532

Lattice studies find that this is IR-conformal; e.g. Hietanen, Rummukainen, Tuominen,
PRD 80, 094504 (2009) [arXiv:0904.0864]; Bursa et al., PRD 84, 034506 (2011)
[arXiv:1104.4301]; Catterall et al., PRD85, 094501 (2012) [arXiv:1108.3794], talks at
Lattice 2013; measurements of γ: e.g.,

SU(2) with Nf = 2, DeGrand, Shamir, Svetitsky, γ = 0.31(6), IR-conformal, PRD
83, 074507 (2011) [arXiv:1201.0935]

Evidently, the higher-loop perturbative calculation of γ shifts the value toward the
lattice measurement, showing usefulness of these higher-loop calculations.



SU(Nc) with fermions in symmetric rank-2 (S2) tensor representation - we find:

Nc Nf γIR,2ℓ,S2 γIR,3ℓ,S2 γIR,4ℓ,S2

3 2 (2.44) 1.28 1.12
3 3 0.144 0.133 0.133
4 2 (4.82) (2.08) 1.79
4 3 0.381 0.313 0.315

Some lattice results for Nf = 2 fermions in symmetric rank-2 tensor rep. (no
consensus on whether IR theory has spontaneous chiral symmetry breaking or is chirally
symmetric, conformal):

e.g., SU(3), Nf = 2

γ <∼ 0.45 (Degrand, Shamir, Svetitsky, arXiv:1201.0935, PRD88, 054505 (2013)
[arXiv:1307.2425], find IR-conformality)

γ ∼ 1.5 (Kuti et al., arXiv:1205.1878, PTP, conclude theory has spontaneous chiral
symm. brk.)

Also studies by Kogut, Sinclair..



Further Higher-Loop Structural Properties of β

In addition to αIR,nℓ, further interesting structural properties of the n-loop beta fn.
βnℓ include

• the derivative β′
IR,nℓ ≡ dβnℓ

dα
evaluated at αIR,nℓ.

• the magnitude and location of the minimum in βnℓ

In quasi-scale-invariant case where αIR >∼ αcr, dilaton mass relevant in dynamical
EWSB models depends on how small β is for α near to αIR and hence, at n-loop
order, on β′

IR,nℓ, via the series expansion of βnℓ around αIR,nℓ,

βnℓ(α) = β′
IR,nℓ (α− αIR,nℓ) + O

(

(α− αIR,nℓ)
2
)

We have calculated these structural properties analytically and numerically in Shrock,
Phys. Rev. D87, 105005 (2013) [arXiv:1301.3209].



Derivative of 2-loop β function at αIR,2ℓ:

β′
IR,2ℓ = −2b2

1

b2

=
2b2

1

|b2|
=

2(11CA − 4TfNf)
2

3[4(5CA + 3Cf)TfNf − 34C2
A]

At 3-loop level:

β′
IR,3ℓ =

1

|b3|2
[

− 4|b2|(b2
2 + b1|b3|) + (b2

2 + 2b1|b3|)
√

b2
2 + 4b1|b3|

]

We prove a general inequality: for a given gauge group G, fermion rep. R, and
Nf ∈ I (in a scheme with b3 < 0, which thus preserves the existence of the 2-loop IR
zero in β at 3-loop level),

β′
IR,3ℓ < β′

IR,2ℓ

We carry out a similar analysis of the derivative of the 4-loop β function evaluated at
αIR,4ℓ, denoted β′

IR,4ℓ, and find a similar decrease from 3-loop to 4-loop order.



Some numerical values:

Nc Nf β′
IR,2ℓ β′

IR,3ℓ β′
IR,4ℓ

2 7 1.20 0.728 0.677
2 8 0.400 0.318 0.300
2 9 0.126 0.115 0.110
2 10 0.0245 0.0239 0.0235

3 10 1.52 0.872 0.853
3 11 0.720 0.517 0.498
3 12 0.360 0.2955 0.282
3 13 0.174 0.156 0.149
3 14 0.0737 0.0699 0.0678
3 15 0.0227 0.0223 0.0220
3 16 0.00221 0.00220 0.00220

Illustrative figures for SU(2) with Nf = 8 fermions and SU(3) with Nf = 12
fermions:
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Figure 3: βnℓ for SU(2), Nf = 8, at n = 2, 3, 4 loops. From bottom to top, curves are β2ℓ, β4ℓ, β3ℓ.
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Figure 4: βnℓ for SU(3), Nf = 12, at n = 2, 3, 4 loops. From bottom to top, curves are β2ℓ, β4ℓ, β3ℓ.



Interesting property: for R = fund. rep., αIR,nℓNc, γIR,nℓ, and other structural
properties of βnℓ are similar in theories with different values of Nc and Nf if they have
equal or similar values of r = Nf/Nc.

This motivates a study of the UV to IR evolution of an SU(Nc) gauge theory with Nf

fermions in the fundamental rep. in the ’t Hooft-Veneziano limit Nc → ∞,
Nf → ∞ with r ≡ Nf/Nc fixed and α(µ)Nc ≡ ξ(µ) independent of Nc.
Denote this as the LNN (large Nc, large Nf) limit.

We have carried out this study in RS, Phys. Rev. D87, 116007 (2013)
[arXiv:1302.5434]. Our results provide a unified quantitative understanding of the
similarities in UV to IR evolution of SU(Nc) theories with different Nc and Nf but
similar r.

With ξ = αNc and x = aNc = ξ/(4π), define a rescaled beta function that is
finite in the LNN limit:

βξ ≡ dξ

dt
= lim

LNN
βαNc

with the expansion



βξ ≡ dξ

dt
= −8πx

∞
∑

ℓ=1

b̂ℓx
ℓ = −2ξ

∞
∑

ℓ=1

b̃ℓξ
ℓ ,

where

b̂ℓ = lim
LNN

bℓ

N ℓ
c

, b̃ℓ = lim
LNN

b̄ℓ

N ℓ
c

so b̃ℓ =
b̂ℓ

(4π)ℓ

1-loop and 2-loop coefficients in βξ:

b̂1 =
1

3
(11 − 2r)

and

b̂2 =
1

3
(34 − 13r)

Asymptotic freedom requires r < 11/2. The interval where βξ,2ℓ has an IR zero is

Ir :
34

13
< r <

11

2
, i.e., 2.615 < r < 5.500

2-loop IR zero of βξ,2ℓ is at

ξIR,2ℓ =
4π(11 − 2r)

13r − 34



3-loop and 4-loop coefficients in βξ (in MS scheme):

b̂3 =
1

54
(2857 − 1709r + 112r2) = 52.9074 − 31.6481r + 2.07407r2

b̂4 =
150473

486
−

(485513

1944

)

r+
(8654

243

)

r2 +
(130

243

)

r3 +
4

9
(11−5r+21r2)ζ(3)

= 315.492 − 252.421 r + 46.832 r2 + 0.534979 r3

(where ζ(s) =
∑∞

n=1n
−s is Riemann zeta fn.). The 3-loop β function βξ,3ℓ has an

IR zero at

ξIR,3ℓ =
12π[−3(13r − 34) +

√
C3ℓ ]

D3ℓ

,

where

C3ℓ = −52450 + 41070r − 7779r2 + 448r3

D3ℓ = −2857 + 1709r − 112r2



By same type of proof as given before, we show

ξIR,3ℓ ≤ ξIR,2ℓ

Further, since b̂4 reverses sign from neg. to pos. as r increases through r = 3.119,

ξIR,4ℓ < ξIR,3ℓ if 2.615 < r < 3.119, (where b̂4 < 0),

ξIR,4ℓ > ξIR,3ℓ if 3.119 < r < 5.500, (where b̂4 > 0)

Numerical values given in next table. The magnitude of the fractional difference

|ξIR,4ℓ − ξIR,3ℓ|
ξIR,4ℓ

is reasonably small.



r ξIR,2ℓ ξIR,3ℓ ξIR,4ℓ
2.8 28.274 3.573 3.323
3.0 12.566 2.938 2.868
3.2 7.606 2.458 2.494
3.4 5.174 2.076 2.168
3.6 3.731 1.759 1.873
3.8 2.774 1.489 1.601
4.0 2.095 1.252 1.349
4.2 1.586 1.041 1.115
4.4 1.192 0.8490 0.9003
4.6 0.8767 0.6725 0.7038
4.8 0.6195 0.5083 0.5244
5.0 0.4054 0.3538 0.3603
5.2 0.2244 0.2074 0.2089
5.4 0.06943 0.06769 0.06775



Anomalous dimension γm ≡ γ:

γ =
∞
∑

ℓ=1

ĉℓ x
ℓ =

∞
∑

ℓ=1

c̃ℓ ξ
ℓ

where ĉℓ = limLNN(cℓ/N
ℓ
c) and c̃ℓ = ĉℓ/(4π)ℓ. The coefficients ĉℓ are

ĉ1 = 3 , ĉ2 =
203

12
− 5

3
r = 16.917 − 1.667r

ĉ3 =
11413

108
−

(

1177

54
+ 12ζ(3)

)

r − 35

27
r2 = 105.676 − 36.221r − 1.296r2

ĉ4 =
460151

576
− 23816

81
r+

899

162
r2− 83

81
r3+

(

1157

9
− 889

3
r+20r2+

16

9
r3

)

ζ(3)

+r
(

66 − 12r
)

ζ(4) +
(

− 220 + 160r
)

ζ(5)

= 725.280 − 412.892r + 16.603r2 + 1.1123r3



Value of n-loop γ evaluated at n-loop ξIR,nℓ: γIR,nℓ ≡ γnℓ
∣

∣

ξ=ξIR,nℓ
;

γ
IR,2ℓ

=
(11 − 2r)(1009 − 158r + 40r2)

12(13r − 34)2

and so forth for higher-loop order. Numerical values:

r γ
IR,2ℓ

γ
IR,3ℓ

γ
IR,4ℓ

3.6 1.853 0.5201 0.3083
3.8 1.178 0.4197 0.3061
4.0 0.7847 0.3414 0.2877
4.2 0.5366 0.2771 0.2664
4.4 0.3707 0.2221 0.2173
4.6 0.2543 0.1735 0.1745
4.8 0.1696 0.1294 0.1313
5.0 0.1057 0.08886 0.08999
5.2 0.05620 0.05123 0.05156
5.4 0.01682 0.01637 0.01638

General inequality as before: γ
IR,3ℓ

< γ
IR,2ℓ

.



We have studied the approach to the LNN limit and find that this is quite rapid, with
leading correction terms suppressed by 1/N 2

c . For example,

αIR,2ℓNc =
4π(11 − 2r)

13r − 34
+

12πr(11 − 2r)

(34 − 13r)2N 2
c

+ O
( 1

N 4
c

)

γ
IR,2ℓ

=
(11 − 2r)(1009 − 158r + 40r2)

12(13r − 34)2

+
(11 − 2r)(18836 − 5331r + 648r2 − 140r3)

(13r − 34)3N 2
c

+ O
( 1

N 4
c

)

(Corresponding study for supersymmetric gauge theory done in Ryttov and RS, op. cit.)

These results provide an understanding of the approximate universality that is exhibited
in calculations of these quantities for different (finite) values of Nc and Nf with similar
or identical values of r.



Study of Scheme Dependence in Calculation of IR Fixed
Point

Since coeffs. bn in βnℓ, and hence also αIR,nℓ, are scheme-dependent for n ≥ 3, it is
important to assess the effects of this scheme dependence. We have obtained new
results in RS, PRD 88, 036003 (2013) [arXiv:1305.6524] and recently in RS,
arXiv:1405.6244, extending our earlier studies in Ryttov and RS, PRD 86, 065032
(2012) [arXiv:1206.2366] and PRD 86, 085005 (2012) [arXiv:1206.6895].

A scheme transformation (ST) is a map between α and α′ or equivalently, a and a′,
where a = α/(4π) of the form

a = a′f(a′)

with f(0) = 1 to keep UV properties unchanged. Write

f(a′) = 1 +

smax
∑

s=1

ks(a
′)s = 1 +

smax
∑

s=1

k̄s(α
′)s ,

where k̄s = ks/(4π)s, and smax may be finite or infinite.

The Jacobian J = da/da′ = dα/dα′ = 1 +
∑smax

s=1 (s+ 1)ks(a
′)s, satisfying

J = 1 at a = a′ = 0.



After the scheme transformation is applied, the beta function in the new scheme is
given by

βα′ ≡ dα′

dt
=
dα′

dα

dα

dt
= J−1 βα .

with the expansion

βα′ = −2α′
∞
∑

ℓ=1

b′
ℓ(a

′)ℓ = −2α′
∞
∑

ℓ=1

b̄′
ℓ(α

′)ℓ ,

where b̄′
ℓ = b′

ℓ/(4π)ℓ.

We calculate the b′
ℓ as functions of the bℓ and ks. At 1-loop and 2-loop, this yields the

well-known results
b′

1 = b1 , b′
2 = b2

We find
b′

3 = b3 + k1b2 + (k2
1 − k2)b1 ,

b′
4 = b4 + 2k1b3 + k2

1b2 + (−2k3
1 + 4k1k2 − 2k3)b1



b′
5 = b5 + 3k1b4 + (2k2

1 + k2)b3 + (−k3
1 + 3k1k2 − k3)b2

+(4k4
1 − 11k2

1k2 + 6k1k3 + 4k2
2 − 3k4)b1

etc. at higher-loop order.

A physically acceptable ST must satisfy several conditions:

•C1: the ST must map a (real positive) α to a real positive α′, since a map taking
α > 0 to α′ = 0 would be singular, and a map taking α > 0 to a negative or
complex α′ would violate the unitarity of the theory.

•C2: the ST should not map a moderate value of α, where perturbation theory is
applicable, to a value of α′ so large that pert. theory is inapplicable.

•C3: J should not vanish, or else there would be a pole in βα′

•C4: Existence of an IR zero of β is a scheme-independent property, so the ST
should satisfy the condition that βα has an IR zero if and only if βα′ has an IR zero.

These conditions can always be satisfied by an ST near the UVFP at α = α′ = 0, but
they are not automatic, and can be quite restrictive at an IRFP.



For example, consider the ST (dependent on a parameter r)

a =
tanh(ra′)

r
with inverse

a′ =
1

2r
ln

(

1 + ra

1 − ra

)

(e.g., for r = 4π, α = tanhα′). This is acceptable for small a, but if a > 1/r, i.e.,
α > 4π/r, it maps a real α to a complex α′ and hence is physically unacceptable.
For r = 8π, e.g., this pathology can occur at the moderate value α = 0.5.

We have constructed several STs that are acceptable at an IRFP and have studied
scheme dependence of the IR zero of βnℓ using these. For example,

a =
sinh(ra′)

r
with inverse

a′ =
1

r
ln

[

ra+
√

1 + (ra)2

]



See papers for tables of numerical results for several scheme transformations. Here, we
list some numerical results for the a = (1/r) sinh(ra′) scheme transformation with
SU(3) and illustrative values of Nf and r.

We denote the IR zero of βα′ at the n-loop level as α′
IR,nℓ ≡ α′

IR,nℓ,r.

For N = 3, Nf = 10, αIR,2ℓ = 2.21, and:

αIR,3ℓ,MS = 0.764, α′
IR,3ℓ,r=3 = 0.762, α′

IR,3ℓ,r=6 = 0.754,

α′
IR,3ℓ,r=9 = 0.742

αIR,4ℓ,MS = 0.815, α′
IR,4ℓ,r=3 = 0.812, α′

IR,4ℓ,r=6 = 0.802,

α′
IR,4ℓ,r=9 = 0.786

For N = 3, Nf = 12, αIR,2ℓ = 0.754, and:

αIR,3ℓ,MS = 0.435, α′
IR,3ℓ,r=3 = 0.434, α′

IR,3ℓ,r=6 = 0.433,

α′
IR,3ℓ,r=9 = 0.430

αIR,4ℓ,MS = 0.470, α′
IR,4ℓ,r=3 = 0.470, α′

IR,4ℓ,r=6 = 0.467,

α′
IR,4ℓ,r=9 = 0.464



Further studies with other scheme transformations underway; see also related work in
Garkusha and Kataev, PLB 705, 400 (2011) [arXiv:1108.5909]; T. Ryttov, PRD 89,
016013 (2014) [arXiv:1309.3867]; PRD 89, 056001 (2014) [arXiv:1311.0848].

Our studies provide a quantitative evaluation of scheme-dependent effects in
calculations of the IR zero in the beta function. We have constructed scheme
transformations that are physically acceptable over the required range of αIR values
and have found reasonably small scheme-dependence in the value of the IR zero of β
for moderate αIR.

This work may be contrasted with the many studies of scheme-dependence in
higher-order perturbative QCD calculations, and work on optimizing convergence of the
perturbation series for fits to experimental data; the difference is that those studies
apply in the vicinity of the UV zero of beta at α = 0, while our work is for an IR zero
away from α = 0.



Since the coefficients bℓ at loop order ℓ ≥ 3 in the beta function are
scheme-dependent, one might expect that it would be possible, at least in the vicinity
of the UVFP at α = α′ = 0, to construct a scheme transformations that would set
b′
ℓ = 0 for some range of ℓ ≥ 3, and, indeed a ST that would do this for all ℓ ≥ 3, so

that βα′ would consist only of the 1-loop and 2-loop terms (’t Hooft scheme).

We have constructed an explicit scheme transformation that does this and have studied
its range of applicability. Specifically, we construct a scheme transformation, denoted
SR,m,k1, that removes the terms in the beta function from loop order 3 up to ℓ+ 1,
inclusive. In the limit m → ∞, this transforms to the ’t Hooft scheme.

To construct this ST, first, we take advantage of the property that in b′
ℓ, the ST

coefficient kℓ−1 appears only linearly. For example, b′
3 = b3 + k1b2 + (k2

1 − k2)b1,
etc. for higher-ℓ b′

ℓ.

So solve eq. b′
3 = 0 for k2, obtaining

k2 =
b3

b1

+
b2

b1

k1 + k2
1

This determines SR,2,k1.



To get SR,3,k1, substitute this k2 into expression for b′
4 and solve eq. b′

4 = 0, obtaining

k3 =
b4

2b1

+
3b3

b1

k1 +
5b2

2b1

k2
1 + k3

1

This determines SR,3,k1.

To get SR,4,k1, substitute these k2 and k3 in expression for b′
5 and solve eq. b′

5 = 0
for k4. This yields

k4 =
b5

3b1

− b2b4

6b2
1

+
5b2

3

3b2
1

+

(

2b4

b1

+
3b2b3

b2
1

)

k1

+

(

6b3

b1

+
3b2

2

2b2
1

)

k2
1 +

(

13b2

3b1

)

k3
1 + k4

1

This determines SR,4,k1. We continue this procedure iteratively to calculate SR,m,k1

for higher m. In general, the equation b′
ℓ = 0 is a linear equation for kℓ−1, so one is

guaranteed a unique solution.

So the ST SR,m,k1 has nonzero ks, s = 1, ...,m and in the transformed beta
function, sets b′

ℓ = 0 for ℓ = 3, ...,m+ 1. The coefficients ks for this ST depend on
the bn in the original beta function for n = 1, ...,m+ 1, and on the parameter k1.



The simplest realization of these scheme transformations takes k1 = 0; we denote this
as SR,m ≡ SR,m,k1=0.

However, starting from the MS scheme, we showed that this ST fails to be physically
acceptable for a substantial interval of Nf ∈ I, because it leads to ST function f(a′)
and Jacobian J going through zero to negative values.

Since the bn have been calculated up to loop order n = 4, one can carry out this study
for SR,2 (also denoted S2), done in Ryttov and RS, PRD 86, 065032 (2012)
[arXiv:1206.2366] and for SR,3, done in RS, PRD 88, 036003 (2013) [arXiv:1305.6524].

Recently, we have studied the generalization to SR,m,k1 with nonzero k1, in RS,
arXiv:1405.6244. The main result of this work is to show that, taking advantage of the
additional parameter k1, the SR,m,k1 scheme transformation successfully removes the
terms of order ℓ in beta from ℓ = 3 up to ℓ = m+ 1 inclusive while satisfying the
conditions of physical acceptability over a substantially larger part of the interval of
Nf ∈ I, where the 2-loop beta function has an IR zero.



For example, for SR,2,k1, evaluating the ST function f(a′) at the
(scheme-independent) 2-loop value a = a′ = aIR,2ℓ, one has

f(a′
IR,2ℓ) = 1 +

b1b3

b2
2

+
b2

1

b2
2

k2
1

Hence, we have the inequality

1 +
b1b3

b2
2

+
b2

1

b2
2

k2
1 > 0 .

If k1 = 0 as with the SR,2 ST, this is negative for a substantial range of Nf ∈ I, so
the ST cannot be used. Now with SR,2,k1, because the coefficient of k2

1 is positive, this
inequality can always be satisfied with an appropriate value of k1. Similar results hold
for the Jacobian J and for SR,m,k1 with higher m.



Study of RG Flows in Gauge Theories with Many Fermions

If the β function of a theory is positive near zero coupling, then this theory is IR-free; as
µ increases from the IR to the UV, the coupling grows. It is of interest to investigate
whether a non-AF theory of this type might have a UV fixed point (UV zero of β).

In addition to performing perturbative calculations of β to search for such a UVFP in
an IR-free theory, one can use large-N methods. An explicit example is the O(N )
nonlinear σ model in d = 2 + ǫ spacetime dimensions. From an exact solution of this
model in the limit N → ∞, one finds that (for small ǫ)

β(λ) = ǫλ
(

1 − λ

λc

)

,

where λ is the effective coupling and λc = 2πǫ/N (W. Bardeen, B. W. Lee, and R.
Shrock, Phys. Rev. D 14, 985 (1976); E. Brézin and J. Zinn-Justin, Phys. Rev. B 14,
3110 (1976)). Thus this theory has a UVFP at λc, so that if initial value of λ < λc,
then λ ր λc as µ → ∞.

There has long been interest in RG properties of d = 4 QED and, more generally, U(1)
gauge theory (Gell-Mann and Low; Johnson, Baker, and Willey; Adler; Miransky;
Yamawaki,...).



Consider a vectorial U(1) theory with Nf massless Dirac fermions of charge q. With no
loss of generality, set q = 1. Write β function as

βα = 2α

∞
∑

ℓ=1

bℓ a
ℓ

The 1-loop and 2-loop coefficients are

b1 =
4Nf

3
, b2 = 4Nf

These coefficients have the same sign, so the two-loop beta function, βα,2ℓ, does not
have a UV zero, and this is the maximal scheme-independent information about it. The
coefficients have been calculated up to five loops in the MS scheme.

The 3-loop coefficient (deRafael and Rosner) is negative:

b3 = −2Nf

(

1 +
22Nf

9

)

Hence, βα,3ℓ has a UV zero, namely,

α
UV,3ℓ

= 4πa
UV,3ℓ

=
4π[9 +

√

3(45 + 44Nf) ]

9 + 22Nf



The 4-loop coefficient is (Gorishny, Kataev, Larin, Surguladze)

b4 = Nf

[

− 46 +
(760

27
− 832ζ(3)

9

)

Nf − 1232

243
N 2
f

]

Numerically,
b4 = −Nf (46 + 82.97533Nf + 5.06996N 2

f ]

This is negative for all Nf > 0.

Recently, b5 has been calculated (Kataev, Larin; Baikov, Chetyrkin, Kühn, Rittinger,
Sturm, 2012, 2013). Numerically,

b5 = Nf(846.6966 + 798.8919Nf − 148.7919N 2
f + 9.22127N 3

f

which is positive for all Nf > 0.

In RS, PRD 89, 045019 (2014) [arXiv:1311.5268], we have investigated whether the
n-loop beta function for this U(1) gauge theory has a UV zero for n up to 5 loops, for
a large range of Nf . Our results are given in the table (dash means no UV zero).



Nf α
UV,2ℓ

α
UV,3ℓ

α
UV,4ℓ

α
UV,5ℓ

1 − 10.2720 3.0400 −
2 − 6.8700 2.4239 −
3 − 5.3689 2.0776 −
4 − 4.5017 1.8463 −
5 − 3.9279 1.67685 2.5570
6 − 3.5156 1.5455 1.8469
7 − 3.2027 1.4397 1.6243
8 − 2.9555 1.3519 1.4851
9 − 2.7545 1.2776 1.3863
10 − 2.5871 1.2135 1.3120
20 − 1.7262 0.8483 −
100 − 0.7081 0.33265 −
500 − 0.3038 0.1203 −
103 − 0.2127 0.07678 −
104 − 0.016614 0.016965 −

A necessary condition for the perturbatively calculated β function to yield evidence for
a stable UV zero is that it should remain present when one increases the loop order and
the fractional change in the value should decrease going from n to n+ 1 loops.



As is evident from the table, we do not find that the UV zeros that we have calculated
at ℓ = 3, 4, 5 loop order for a large range of Nf values satisfy this necessary
condition. Hence, our results do not give evidence for a UVFP in this theory.

We have also carried out an analysis in the limit

Nf → ∞ with finite y(µ) ≡ Nf a(µ) =
Nf α(µ)

4π
We denote this as the LNF (large-Nf) limit; analogous to N → ∞ limit in nonlinear
σ model.

We set b1 = b1,1Nf with b1,1 = 4/3. Further,

bℓ =

ℓ−1
∑

k=1

bℓ,kN
k
f for ℓ ≥ 2 ,

where the bℓ,k are independent of Nf .

Hence,
bℓ ∝ N ℓ−1

f for ℓ ≥ 2 as Nf → ∞

We thus define the finite quantities

b̌ℓ ≡ bℓ

N ℓ−1
f

for ℓ ≥ 2



so
lim

Nf→∞
b̌ℓ = bℓ,ℓ−1 for ℓ ≥ 2

We define a rescaled β function that is finite in the LNF limit as βy ≡ βαNf . Then

βy = 8πb1,1 y
2

[

1 +
1

b1,1Nf

∞
∑

ℓ=2

bℓ y
ℓ−1

]

The condition that the n-loop βy, βy,nℓ, has a zero at y 6= 0 is the equation

1 +
1

b1,1Nf

n
∑

ℓ=2

bℓ y
ℓ−1 = 0 .

In the LNF limit, of the n− 1 roots of this equation, the relevant one has the
approximate form

y
UV,nℓ

∼
(

− b1,1Nf

bn,n−1

)
1

n−1

Hence, βy,nℓ has a zero for y 6= 0 in the LNF limit if and only if bn,n−1 < 0.
However, even if this condition were to be met, it follows that, for fixed finite loop order
n, in the LNF limit, limNf→∞ y

UV,nℓ
= ∞.



One can reexpress βy as a series in powers of ν ≡ 1/Nf :

βy = 8πb1,1 y
2
[

1 +

∞
∑

s=1

Fs(y)ν
s
]

An exact integral representation of F1(y) is known (cf. Holdom, 2010). We have used
this representation to determine the signs of bn,n−1 up to n = 24 loops. We find that
these signs are scattered, and show no indication of an onset of negative signs.

Thus, we do not find evidence of a UVFP in a U(1) gauge theory with Nf massless
charged fermions for large Nf . Further nonperturbative results, such as calculations of
Fs(y) for s ≥ 2, would give more information on this question.

We have also studied an SU(N ) non-Abelian gauge theory with Nf massless fermions
in a given representation for Nf . This theory is IR-free, and we again we do not find
evidence of a UVFP.



Conclusions

• Understanding the UV to IR evolution of an asymptotically free gauge theory and
the nature of the IR behavior is of fundamental field-theoretic interest.

• Our higher-loop calculations give information on this UV to IR flow and on
determination of αIR,nℓ and γIR,nℓ.

• It is valuable to compare results from higher-loop continuum calculations with lattice
measurements.

• Results on the limit Nc → ∞, Nf → ∞ with Nf/Nc fixed provide insight into
the similarities in UV to IR flows in theories with different Nc and Nf but similar r.

• We have investigated effects of scheme-dependence of IR zero in the beta function
in higher-loop calculations and have constructed explicit scheme transformations that
remove higher-loop terms in beta.

• We have studied RG flows in U(1) and non-Abelian gauge theories with Nf fermions
for large Nf , finding evidence against a UV zero in beta.


