The search for new physics (at the LHC)

Paris Sphicas
CERN & University of Athens
CERN Summer Student program
July 28 - 30, 2014

Prelude – reminder of the prerequisites

- Why we believe there should be new physics BSM
- Proving that there is "new physics"; main prerequisites: understanding the detector, understanding (measuring)
 Standard Model physics at 7 and 8 TeV
- What happens when we do not find a new signal [limits]

Searching for New Physics

- Searching for substructure, new interactions
- Searches for extra dimensions and other Exotica
- Supersymmetry [SUSY]
- Summary

So what new physics?

Many (many) possibilities

- **New strong interections?**
 - Technicolor; excited quarks; compositeness; new "contact" interactions
- **Exotica:**

P. Sphicas

- Weird stuff: leptoquarks?
- New "forces"?
 - New resonances (W-Z-like)
- More generations?
 - Fourth generation (b')
- Gravity descending at the TeV scale?
 - New resonances; missing stuff; black holes; SUSY-like signatures [Universal Extra dimensions]
- Supersymmetry (SUSY)
 - (super) partners to all that we have in the SM
 - production of squarks, gluinos, sleptons, gauginos,...
- **SUSY-inspired exotica:**
 - Long-lived massive (new) particles?
- Some true inspirations: "hidden valleys"?

parton-parton scattering and QCD

Jets

P. Sphicas
Physics Beyond the Standard Model

CERN Summer Student Program Jul 28-30, 2014

How would new structure show up?

- If quarks are composite, i.e. they are made of other "stuff", then there will be excited states, q*, which would decay to a quark and a neutral boson (gluon, photon or Z)
 - Look for following decays: q*→qg; q*→qγ, q*→qZ
 - Signature: resonance in di-jet, photon+jet or Z+jet mass spectrum
- The scattering of two quarks (and gluons, and quarks against gluons) will not follow QCD but will show deviations from the exchange of a new boson
 - Signature: the angular distribution of two-jet events will look different from "Rutherford scattering with scaling violations"

Dijet mass (and search)

 Very early search for numerous resonances BSM: string resonance, excited quarks, axigluons, colorons, E6 diquarks, W' & Z', RS gravitons

Four-parameter fit to describe QCD shape

$$\frac{d\sigma}{dm} = p_0 \frac{\left(1 - \frac{m}{\sqrt{s}}\right)^{p_1}}{\left(\frac{m}{\sqrt{s}}\right)^{B}}$$

$$B = p_2 + p_3 \left(m / \sqrt{s} \right)$$

M(q*)>3.1 TeV

Excited quarks (continued)

Decays into quark and photon?

Kinematic selection

(acceptance)

- p_{TY} > 85 GeV
- p_{Tjet} > 30 GeV
- m_{yj} > 260 GeV
- $\Delta R(\gamma,j) > 0.4$ j is any jet w $p_T > 30$ GeV
- Background: by fit to data across all bins (same form as for dijets)
 - Run "BumpHunter": most significant excess in 784< M_{γj}
 <1212 GeV (p-value = 0.20)

Excited quarks (continued)

■ Decays in \(\frac{\pi}{2} \)

- Backgrou across all for dijets)
 - Run "Bu significa
 <1212 G

Angular distributions

- New physics: presumably high-mass; so not boosted along z-axis; so more "central"!
 - Angular distribution in QCD background different than that from various signals [e.g. an excited quark, decaying to two jets; or jets from "stronger scattering"]

Quark compositeness

- Centrality ratio: events with two central leading jets to events with both leading jets
 - Sensitive to deviations from the SM from quark sub-structure.

$$R_{\eta} = \frac{\sum_{|\eta| < 0.7} Dijets}{\sum_{0.7 < |\eta| < 1.3} Dijets}$$

Very small dependence of ratio on m_{jj} . Agreement with QCD. Exclude (95%CL) quark compositeness for Λ <4.0TeV.

Search for quark compositeness

ATLAS at 4.8 fb⁻¹, at 7 TeV

$$F_{\chi} = N(|y^*| < 0.6) / N(|y^*| < 1.7)$$

Limits in extra dimensions:

(n=2) M_D>3.8 TeV; (n=6) M_D>4.1 TeV

Parton-parton scattering ("2 to 2 process")

$$y_{boost} = \frac{1}{2}(y_1 + y_2) = \frac{1}{2}\ln\frac{x_1}{x_2}$$

$$x_1 = \left(2p_T/\sqrt{s}\right) e^{y_{\text{boost}}} \cosh y^*$$

 $x_2 = \left(2p_T/\sqrt{s}\right) e^{-y_{\text{boost}}} \cosh y^*$

$$y^* = \frac{1}{2} (y_1 - y_2)$$

Contact interactions & Dijet Angular Distributions

 $d\sigma \sim [QCD + Interference + Compositeness]$

$$d\sigma \sim 1/(1-\cos\theta^*)^2$$

$$d\sigma \sim (1+\cos\theta^*)^2$$

Instead of $\cos\theta$, use: $dN/d\chi$ sensitive to contact interactions

$$\chi = \frac{1 + \cos \theta^*}{1 - \cos \theta^*} = \exp(2|y^*|)$$

Contact interactions

- The χ distributions do not exhibit any excess at low χ . Good description by QCD.
- Lower limit on scale of contact interaction Λ =5.6 TeV (95% CL)

Most recent results from 7 TeV:7.8 TeV

Quark compositeness

Decay to jet + Z?

High mass $q^* \rightarrow Z$ with large boost (p_T)

CMS Experiment at LHC, CERN

Quark compositeness

- Decay to jet + Z?
 - High mass $q^* \rightarrow Z$ with large boost (p_T)

Main background: DY+jets. Bkg estimate:

- (a) template fit to high stats, signal-free region in $1/p_T$: [125-360] GeV
- (b) extrapolation to high p_T

Signal efficiency X acceptance ~ 50-70% (increasing with q* mass)

Contact Interactions (CI)

- Cis: low-energy manifestation of "true" phenomena, e.g.
 - Quark-lepton compositeness
 - Large Extra Dimension (ADD) model
- Deviations in dimuon mass:

$$\frac{d\sigma}{dm_{\mu\mu}} = \frac{d\sigma_{DY}}{dm_{\mu\mu}} - \eta_{LL} \frac{F_I(m_{\mu\mu})}{\Lambda^2} + \frac{F_C(m_{\mu\mu})}{\Lambda^4}$$

- ◆ F₁ and Fc: interference terms
- Λ: energy of "new binding"
- Mass spectrum agrees, so set limits instead:
 - For Constr Interf: Λ_C>4.9 TeV
 - For Destr Interf: Λ_I>4.5 TeV

Searches for signs of exotic New Physics

Leptoquarks (I)

- As name implies, they are both "leptons" and "quarks":
 i.e. carry baryon and lepton number & color (large σ!)
 - GUT-inspired models, with (hypothetical) proton decay acting as one of the main motivations

Leptoquarks (II)

- Main irreducible bkg: DY+jets; 2nd: top production
 - In situ Z+jets measurement + measured top cross section in the dilepton channel to estimate both bkgs

DY+jets normalized to Z+jets (control region) anti-Z cut optimize S_⊤ cut (massdependent)

Leptoquarks: limits

β=1

β=0.5

Leptoquarks: limits

Combined limit

Extra Dimensions (?!?)

TeV-scale gravity

- The idea of our times: that the scale of gravity is actually not given by M_{PL} but by M_W
 - Strings live in >4 dimensions.
 Compactification → 4D "SM". M_{PL-4} related to M_{PL-(4+d)} via volume of xtra dimensions:
 - $M_{PL-4}^2 \sim V_d M_{PL-(4+d)}^{2+d}$
 - Conventional compactification: very small curled up dims, M_{PL-4}~M_{PL-(4+d)}
 - $V_d \sim (M_{PL-4})^{-d}$
 - Alternative: volume is large; large enough that V_d>>(M_{PL-(4+d)})^{-d}
 - Then M_{PL-(4+d)} can be ~ TeV (!)
 - "our" Planck mass at $\log(\Lambda)$ ~19: an artifact of the extrapolation

Forces and number of dimensions

- Number (D) of space-time dimensions → form of force observed
 - ◆ E+M: F~1/r² because D=3+1
 - For "ants" living in D=2+1 dimensions, E+M is actually a F~1/r force

Tabletop experiments: look for deviations from 1/r² law

- Propagation into the other dimensions:
 - Resonances!

Missing energy!

Different types of extra dimensions

The "traditional" image of a circular extra dimension

Randal-Sundrum

 $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} + g_{mn}(y) dy^m dy^n$ (x: SM coordinates; y: d extra ones)
Generalize: dependence on location in extra dimension

 $ds^{2}=e^{2A(y)}g_{\mu\nu}dx^{\mu}dx^{\nu}+g_{mn}(y)dy^{m}dy^{n}$ Large exp(A(y)) results in large V_d

As an example (RS model), two 4-D branes, one for SM, one for gravity, "cover" a 5-D space – with an extra dimension in between

Search for Z'

Di-muon event,M(μμ)=1379 GeV

Nice, clean signature (but SM tails)

Experimental issues:

- detector resolution: for muons deteriorates with mass; for electrons the opposite
- reconstruction of *E* and *p* recontruction with > 1 TeV
 can be tricky business...

Search for a Z'→ee and/or μμ

Model	ATLAS	CMS
SSM Z'	2.86	2.96
Ε ₆ Ζ' _ψ	2.38	2.60
RS G* (k/ \overline{M}_{Pl} =0.1)	2.47	

SSM: Sequential SM RS: Randall-Sundrum

Search for W': example from CMS

Events are equally spectacular; a very high-p_T lepton, and little, very little else!

Search for W': example from CMS

Electrons

Muons

Search for W': example from CMS

Electrons Muons

Search for a resonance decaying to t-tbar

Search for a resonance decaying to t-tbar

non-boosted tops

600 800 1000 1200 1400 1600 1800 2000

Z' mass [GeV]

boosted tops

Search for diboson resonances

■ X→WZ

Dilepton+ jets

X→ZZ

2lep+jets; 4lep

Monojets?

Monojets (I)

- Extra dimensions: hard scatter leads to a jet plus an invisible particle [e.g. a graviton]; signal region:
 - ◆ P_T(jet1)>250 GeV, ME_T>220 GeV
 - P_T(jet2)<60GeV, Δφ(jet2,ME_T)>0.5
 - No "reasonable" electrons or muons

Monojets (II)

- Main bkg: EWK
 - Irreducible: Z(→vv)+jets & W(→lv)
 +jets
 - Get normalization from data, then apply to Monte Carlo samples
- QCD (multijet) bkg: reverse Δφ cut and allow 2nd jet!
- Data agree with sum of bkgs:
 - Bkg est: 1010±37(stat)±65(syst)
 - Data: 965 events
- Model-independent limit on cross section x acceptance: "0.11 pb at 95% CL"

95 out of 100 experiments [with 0.11 pb] would have observed a larger number of events

No "magic" to "95%" – only a norm.

Dark Matter?

Dark matter

Early universe: create/destroy dark matter via:

If the two rates are the same → equilibrium; and then, as it cools off...

$$\frac{dn}{dt} = -\langle \sigma_{\rm ann} v \rangle (n^2 - n_{\rm eq}^2)$$

But: universe is expanding

Dark matter (II)

- If DM production rate large compared to expansion rate
 - Essentially a static configuration
 - DM particles are in thermal equilibrium
- If DM production rate small compared to expansion rate
 - Few DM particles remain
 - DM particles do not bump into each other (and do not destroy themselves)
 - Density remains constant (!)

$$\Omega_{\rm DM} h^2 \simeq \frac{3 \times 10^{-27} {\rm cm}^3 {\rm s}^{-1}}{\langle \sigma v \rangle}$$

$$\Omega_{\mathrm{DM}} h^2 \simeq 0.1$$

Thus: σ ~ 1pb!

Mono-X signatures

Search for dark matter: photon/jet+MET

γ +MET signature from:

Extra dimensions $q \bar{q} o \gamma G$

Dark matter $q \bar q o \gamma \chi \bar \chi$

Higgs invisible decays?

 M_{jj} > 1.1 TeV $\Delta\eta_{jj}$ > 4.2 $\Delta\Phi_{jj}$ < 1 MET > 130 GeV lepton veto pT > 10GeV central jet veto pT > 30 GeV Expected 210+-30 evts if BR~100% => Would be clearly visible above bkg

⇒ Proof of principle for VBF to nothing search strategy!

Black Holes?

Search for BHs

THE signature of low-scale quantum gravity (M_D << M_{PI})

• BH formation when the two colliding partons have distance smaller than R_s ,, the Schwarzschild radius corresponding to their

Cross section

 BHs decay in emitting "den quarks, gluor

Contrary to

$$\left. rac{\pm 3}{2}
ight) \over \operatorname{t}^{(n+3)/2} rac{M_{BH}}{M_*}
ight]^{1/(n+1)}$$

ip to ~100 pb!)

oration of energetic

el-dependent)

Search for micro-BH

- Expect lots of activity in the event, so
 - Use $S_T = Sum E_T$ of all objects (including ME_T) with $E_T > 50$ GeV.

A candidate event with 10 jets and $S_T = 1.3 \text{ TeV}$

A candidate event with 9 jets and $S_T = 2.6 \text{ TeV}$

CMS Experiment at LHC, CERN Data recorded: Mon May 23 21:46:2 Run/Event: 165567 / 347495624 Lumi section: 280

Orbit/Crossing: 73255853 / 3161

(Null) search for BHs

arXiv:1012.3375

- Expect lots of activity in the event, so
 - Use S_T = Sum E_T of all objects (including ME_T) with E_T>50 GeV.
 - Great against pileup (in the future as well)
- Key for search: S_T-invariance of final state multiplicity
 - A posteriori wisdom: FSR/ISR collinear do not affect S_⊤ a lot

 Use N=2 shape (with uncertainties) to fit higher multiplicities – where signal more prominent

M_{BH}> 3.8-5.3 TeV (semi-classical approximation)

Jet extinction?

- Production of either black holes or other nonperturbative quantum gravity effects can have rapidly increasing total cross section beyond some scale ~ Λ
 - Their decay to low-multiplicity final states could be thermally suppressed. Leads to effective extinction of high-pT SM scattering

Summary [2/3]

Searches for BSM physics

e* (M=Λ)

μ* (M=Λ)

q* (qg)

q* (qy)

coloron(jj) x2

coloron(4j) x2

gluino(jjb) x2

gluino(3j) x2

Fermions

Multijet

Resonances

CMS Exotica Physics Group Summary - ICHEP, 2014

dijets, A+ LL/RR

dijets, A- LL/RR

dimuons, A+ LLIM

dimuons, Λ- LLIM dielectrons, Λ+ LLIM dimuons, Λ- LLIM single e, Λ HnCM

single μ , Λ HnCM

inclusive jets, A+

inclusive jets, A-

17

Compositeness

Summary [2/3]

- First set of searches today: hadronic channels
 - Jet resonances, jet angular distributions, probing compositeness [nope]
 - New contact interactions [nope]
- Second set of searches today: "exotica" channels
 - Searches for new gauge bosons [nope]
 - Searches for other signs of etxra dimensions [nope]
 - Searches for leptoquarks [nope]
 - Mono-objects, for a signature from "extra dimension physics" or dark matter [nope]
- Next [and final for these lectures] stop: SUSY searches