Flavour Physics & CP Violation Lecture 1 of 4

Tim Gershon University of Warwick

CERN Summer Student Lecture Programme 29th July 2014

Contents

- Part 1
 - What is flavour physics & why is it interesting?
- Part 2
 - What do we know from previous experiments?
- Part 3
 - What do we hope to learn from current experiments?
- Part 4
 - The future of flavour physics

What is flavour physics?

Flavour (particle physics)

From Wikipedia, the free encyclopedia

In particle physics, **flavour** or **flavor** is a quantum number of elementary particles. In quantum chromodynamics, flavour is a global symmetry. In the electroweak theory, on the other hand, this symmetry is broken, and flavour-changing processes exist, such as quark decay or neutrino oscillations.

"The term flavor was first used in particle physics in the context of the quark model of hadrons. It was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins ice-cream store in Pasadena. Just as ice cream has both color and flavor so do quarks."

RMP 81 (2009) 1887

Flavour in particle physics

Flavour quantum numbers:

- Baryon number: B
- Lepton number: L
- Strangeness: S
- Charm: C
- Bottomness: B'
- Topness: T
- Isospin: I or I₃
- Weak isospin: T or T₃
- Electric charge: Q
- X-charge: X

Combinations:

- Hypercharge: Y
 - Y = (B + S + C + B' + T)
 - Y = 2 (Q I₃)
- Weak hypercharge: Y_W
 - Y_W = 2 (Q T₃)
 - X + 2Y_W = 5 (B L)

Flavour mixing

- CKM matrix
- PMNS matrix
- Flavour complementarity

Isospin

What is the difference between the proton (charge = +1) and the neutron (neutral)?

masses almost identical

coupling to the strong interaction identical

Heisenberg (in 1932 – a big year for flavour physics) proposed (p,n) members of isospin doublet:

p: $(I;I_z) = (\frac{1}{2}; +\frac{1}{2})$ n: $(I,I_z) = (\frac{1}{2}; -\frac{1}{2})$

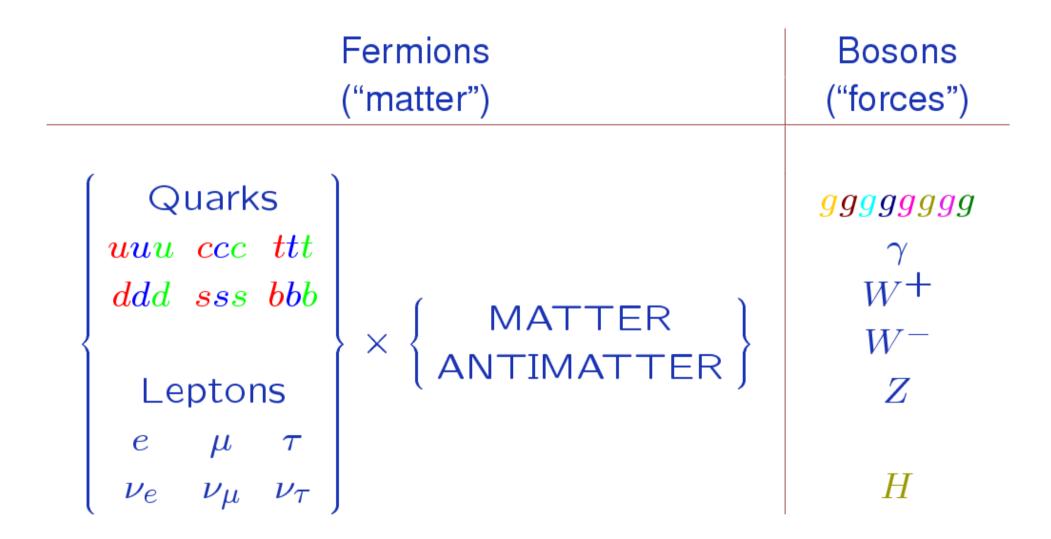
Later extended to other particles pions form an isospin triplet $\pi^{+,0,-}$: (I; I_) = (1; +1,0,-1)

Isospin symmetry

Strong interaction same for proton & neutron

Hamiltonian invariant under global SU(2) rotation

pions thought to be Yukawa particles


gauge bosons responsible for mediating strong force (related to local SU(2) symmetry ... <u>not</u> correct description of strong interaction)

Isospin is not an exact symmetry

nonetheless proved to be a very useful concept successful because $m_u \sim m_d \& m_u, m_d < \Lambda_{_{OCD}}$

What is flavour physics?

Parameters of the Standard Model

- 3 gauge couplings
- 2 Higgs parameters
- 6 quark masses
- 3 quark mixing angles + 1 phase
- 3 (+3) lepton masses
- (3 lepton mixing angles + 1 phase)

() = with Dirac neutrino masses

Parameters of the Standard Model

- 3 gauge couplings
- 2 Higgs parameters
- 6 quark masses
- 3 quark mixing angles + 1 phase
- 3 (+3) lepton masses

• (3 lepton mixing angles + 1 phase)

PMNS matrix

() = with Dirac neutrino masses

Parameters of the Standard Model

- 3 gauge couplings
- 2 Higgs parameters
- 6 quark masses
- 3 quark mixing angles + 1 phase
- 3 (+3) lepton masses
- (3 lepton mixing angles + 1 phase)

PMNS matrix

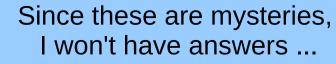
CKM matrix

() = with Dirac neutrino masses

די כל

Mysteries of flavour physics

- Why are there so many different fermions?
- What is responsible for their organisation into generations / families?
- Why are there 3 generations / families each of quarks and leptons?
- Why are there flavour symmetries?
- What breaks the flavour symmetries?
- What causes matter-antimatter asymmetry?


Mysteries of flavour physics

- Why are there so many different fermions?
- What is responsible for their organisation into generations / families?
- Why are there 3 generations / families each of quarks and leptons?
- Why are there flavour symmetries?

im Gershor

lavour & CP\

- What breaks the flavour symmetries?
- What causes matter–antimatter asymmetry?

Reducing the scope

- Flavour physics includes
 - neutrinos
 - charged leptons
 - kaon physics
 - charm & beauty physics
 - (some aspects of) top physics
- My focus will be on charm & beauty

- will touch on other topics when appropriate

Heavy quark flavour physics

• Focus in these lectures will be on

lavour & CPV

- flavour-changing interactions of charm and beauty quarks
- But quarks feel the strong interaction and hence hadronise
 - various different charmed and beauty hadrons
 - many, many possible decays to different final states
- The hardest part of quark flavour physics is learning the names of all the damned hadrons!
- On the other hand, hadronisation greatly increases the observability of CP violation effects
 - the strong interaction can be seen either as the "unsung hero" or the "villain" in the story of quark flavour physics
 ^{I. Bigi, hep-ph/0509153}

Why is heavy flavour physics interesting?

- Hope to learn something about the mysteries of the flavour structure of the Standard Model
- CP violation and its connection to the matter-antimatter asymmetry of the Universe
- Discovery potential far beyond the energy frontier via searches for rare or SM forbidden processes

What is CP violation?

The θ – τ puzzle:

• two strange charged particles discovered

– the " θ " decaying to $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle 0}$

- the "T" decaying to $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}$
- parities of 2π and 3π are opposite, but masses and lifetimes of θ & τ found to be the same

Parity violation discovered 1957 (C.N.Wu et al, then many others, all following T.D.Lee and C.N.Yang)

```
\theta \& \tau are the same particle: " K<sup>+</sup>"
WAFlavour & CPV
```

From P to CP

P is maximally violated in beta decay (no right-handed neutrinos), however, C is also maximally violated (no left-handed antineutrinos)

- C : charge conjugation (swap particle for antiparticle)
- the product CP is conserved (Landau 1957)
- Or so thought, until $K_{L} \rightarrow \pi^{+}\pi^{-}$ [CP(-1) \rightarrow CP(+1)] was observed (Cronin & Fitch, 1964)
 - CP violation distinguishes absolutely matter from antimatter

N.B. CPT is conserved in any Lorentz invariant gauge field theory

For a fascinating historical perspective on the discovery of CP violation, see J. Cronin @ 50 years of CP violation https://indico.ph.qmul.ac.uk/indico/conferenceDisplay.py?confld=15

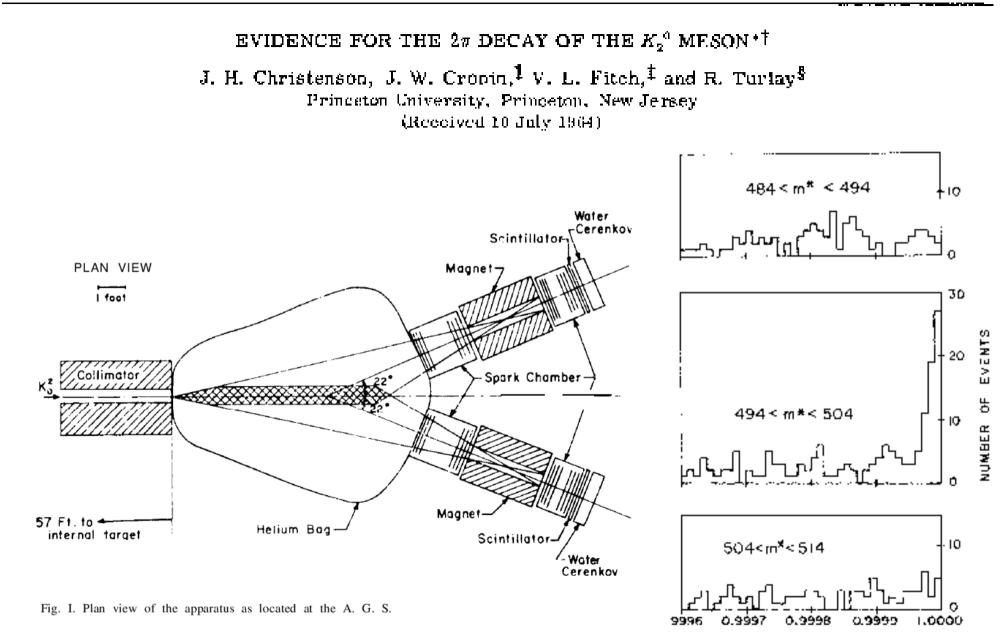
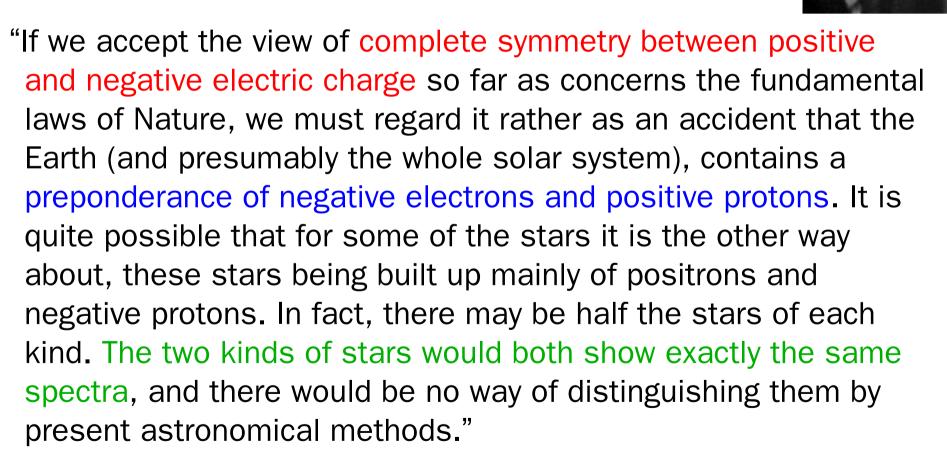


FIG. 3. Angular distribution in three mass ranges for events with $\cos \phi > 0.9995$.

Sakharov conditions

• Proposed by A.Sakharov, 1967

- Necessary for evolution of matter dominated universe, from symmetric initial state
 - (1) baryon number violation
 - (2) C & CP violation

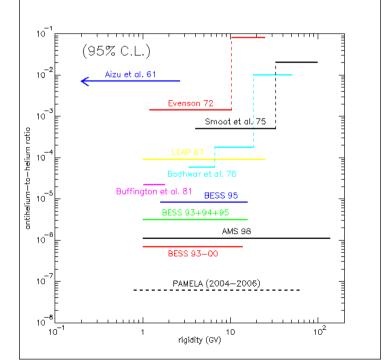

(3) thermal inequilibrium

- No significant amounts of antimatter observed
- $\Delta N_{B}/N_{\gamma} = (N(baryon) N(antibaryon))/N_{\gamma} \sim 10^{-10}$

Dirac's prescience

Concluding words of 1933 Nobel lecture

Digression: Are there antimatter dominated regions of the Universe?


• Possible signals:

m Gershor

avour & CP\

- Photons produced by matter-antimatter annihilation at domain boundaries – not seen
 - Nearby anti-galaxies ruled out
- Cosmic rays from anti-stars
 - Best prospect: Anti-⁴He nuclei
 - Searches ongoing ...

Searches for astrophysical antimatter

Alpha Magnetic Spectrometer Experiment on board the International Space Station Payload for AntiMatter Exploration and Light-nuclei Astrophysics Experiment on board the Resurs-DK1 satellite

launched 15th June 2006

launched 16th May 2011

Dynamic generation of BAU

- Suppose equal amounts of matter (X) and antimatter (\overline{X})
- X decays to
 - A (baryon number N_A) with probability p
 - B (baryon number N_B) with probability (1-p)
- \overline{X} decays to

Tim Gershon

=lavour & CP∨

- \overline{A} (baryon number -N_A) with probability \overline{p}
- $-\overline{B}$ (baryon number $-N_{_{B}}$) with probability (1- \overline{p})
- Generated baryon asymmetry:
 - $-\Delta N_{_{TOT}} = N_{_{A}}p + N_{_{B}}(1-p) N_{_{\underline{A}}}\overline{p} N_{_{B}}(1-\overline{p}) = (p \overline{p}) (N_{_{A}} N_{_{B}})$
 - $-\Delta N_{TOT} \neq 0$ requires $p \neq \overline{p} \& N_A \neq N_B$

CP violation and the BAU

• We can estimate the magnitude of the baryon asymmetry of the Universe caused by KM CP violation

$$\frac{n_{\rm B} - n_{\rm B}}{n_{\rm y}} \approx \frac{n_{\rm B}}{n_{\rm y}} \sim \frac{J \times P_{u} \times P_{d}}{M^{12}} \quad \blacktriangleleft \quad \text{N.B. Vanishes for degenerate masses}$$

$$J = \cos(\theta_{12})\cos(\theta_{23})\cos^{2}(\theta_{13})\sin(\theta_{12})\sin(\theta_{23})\sin(\theta_{13})\sin(\delta)$$

$$P_{u} = (m_{t}^{2} - m_{c}^{2})(m_{t}^{2} - m_{u}^{2})(m_{c}^{2} - m_{u}^{2})$$

$$P_{d} = (m_{b}^{2} - m_{s}^{2})(m_{b}^{2} - m_{d}^{2})(m_{s}^{2} - m_{d}^{2})$$

PRL 55 (1985) 1039

- The Jarlskog parameter J is a parametrization invariant measure of CP violation in the quark sector: $J \sim O(10^{-5})$
- The mass scale M can be taken to be the electroweak scale O(100 GeV)
- This gives an asymmetry O(10⁻¹⁷)

- much much below the observed value of O(10⁻¹⁰)

We need more CP violation!

- Widely accepted that SM CPV insufficient to explain observed baryon asymmetry of the Universe
- To create a larger asymmetry, require
 - new sources of CP violation
 - that occur at high energy scales
- Where might we find it?
 - quark sector: discrepancies with KM predictions
 - lepton sector: CP violation in neutrino oscillations
 - gauge sector, extra dimensions, other new physics: precision measurements of flavour observables are generically sensitive to additions to the Standard Model

How does CP violation arise in the Standard Model?

What breaks the flavour symmetries?

- In the Standard Model, the vacuum expectation value of the Higgs field breaks the electroweak symmetry
- Fermion masses arise from the Yukawa couplings of the quarks and charged leptons to the Higgs field (taking m_=0)
- The CKM matrix arises from the relative misalignment of the Yukawa matrices for the up- and down-type quarks
- Consequently, the only flavour-changing interactions are the charged current weak interactions
 - no flavour-changing neutral currents (GIM mechanism)
 - not generically true in most extensions of the SM
 - flavour-changing processes provide sensitive tests

What causes the difference between matter and antimatter?

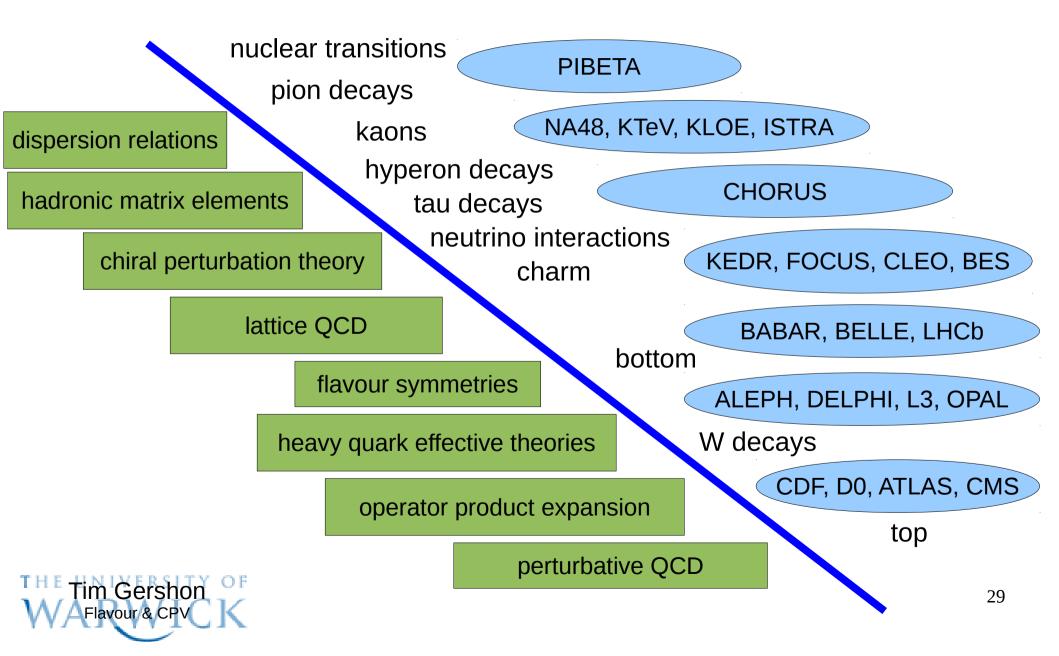
• The CKM matrix arises from the relative misalignment of the Yukawa matrices for the up- and down-type quarks

$$V_{CKM} = U_u U_d^+$$

U matrices from diagonalisation of mass matrices

- It is a 3x3 complex unitary matrix
 - described by 9 (real) parameters
 - 5 can be absorbed as phase differences between the quark fields
 - 3 can be expressed as (Euler) mixing angles
 - the fourth makes the CKM matrix complex (i.e. gives it a phase)
 - weak interaction couplings differ for quarks and antiquarks
 - CP violation

The Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix


$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- A 3x3 unitary matrix
- Described by 4 real parameters allows CP violation
 - PDG (Chau-Keung) parametrisation: θ_{12} , θ_{23} , θ_{13} , δ
 - Wolfenstein parametrisation: λ , A, ρ , η
- Highly predictive

Tim Gershon

lavour & CPV

Range of CKM phenomena

Flavour for new physics discoveries

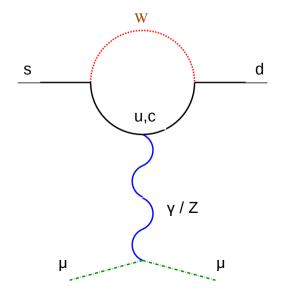
A lesson from history

- New physics shows up at precision frontier before energy frontier
 - GIM mechanism before discovery of charm
 - CP violation / CKM before discovery of bottom & top
 - Neutral currents before discovery of Z
- Particularly sensitive loop processes
 - Standard Model contributions suppressed / absent
 - flavour changing neutral currents (rare decays)
 - CP violation
 - lepton flavour / number violation / lepton universality

The GIM mechanism

$$K^+ \rightarrow \mu^+ v_\mu^- \& \pi^0 \mu^+ v_\mu^-$$
 so why not $K^0 \rightarrow \mu^+ \mu^- \& \pi^0 \mu^+ \mu^-$?

- GIM (Glashow, Iliopoulos, Maiani) mechanism (1970) no tree level flavour changing neutral currents suppression of FCNC via loops
- Requires that quarks come in pairs (predicting charm)


$$A = V_{us}V_{ud}^{*} f(m_u/m_w) + V_{cs}V_{cd}^{*} f(m_c/m_w)$$

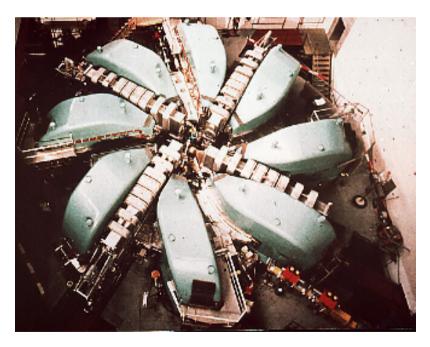
$$2x2 \text{ unitarity: } V_{us}V_{ud}^{*} + V_{cs}V_{cd}^{*} = 0$$

$$m_u, m_c < m_w \therefore f(m_u/m_w) \sim f(m_c/m_w) \therefore A \sim 0$$

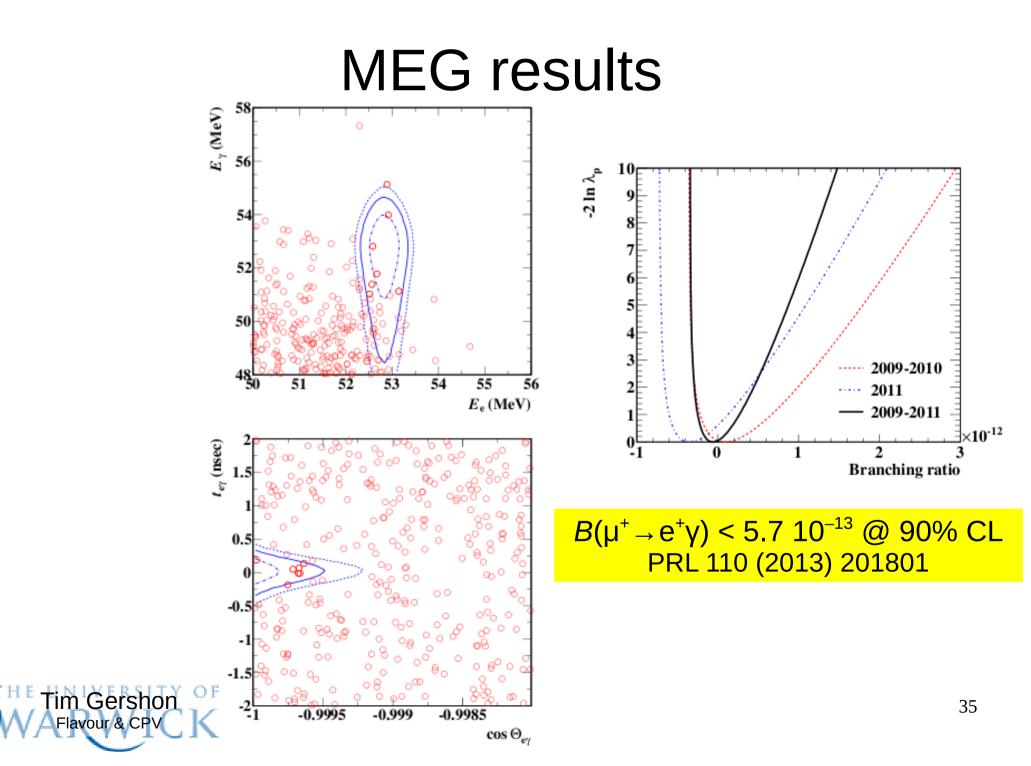
$$kaon \text{ mixing} \Rightarrow \text{ predict } m_c$$

avour & CP

Lepton flavour violation

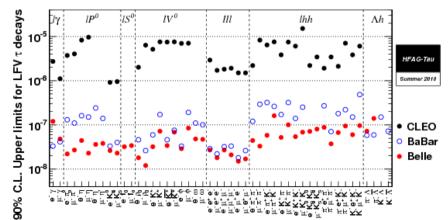

- Why do we not observe the decay $\mu \to e \gamma ?$
 - exact (but accidental) lepton flavour conservation in the SM with $m_y=0$
 - SM loop contributions suppressed by $(m_y/m_w)^4$
 - but new physics models tend to induce larger contributions
 - unsuppressed loop contributions
 - generic argument, true in most common models

The muon to electron gamma (MEG) experiment at PSI

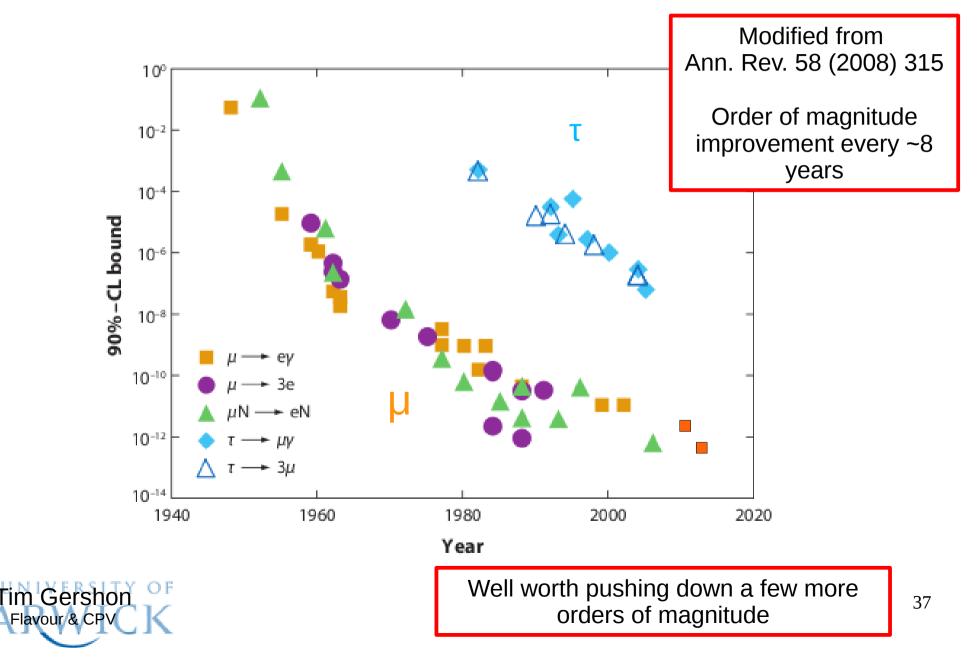

 $\mu^+ \rightarrow e^+ \gamma$

- positive muons \rightarrow no muonic atoms
- continuous (DC) muon beam → minimise accidental coincidences

First results published NPB 834 (2010) 1 Expect improved limits (or discoveries) over the next few years



Prospects for Lepton Flavour Violation


- MEG still taking data; and a further upgrade is planned
- New generations of μ e conversion experiments
 - COMET at J-PARC, followed by PRISM/PRIME
 - mu2e at FNAL, followed by Project X
 - Potential improvements of $O(10^4) O(10^6)$ in sensitivities!
- τ LFV a priority for next generation e^+e^- flavour factories
 - SuperKEKB/Belle2 at KEK & SuperB in Italy
 - O(100) improvements in luminosity \rightarrow O(10) O(100) improvements in sensitivity (depending on background)
 - LHC experiments have some potential to improve $\tau \to \mu \mu \mu$

im Gershor

lavour & CPV

Charged lepton flavour violation

Neutral meson oscillations

- We have flavour eigenstates M^0 and \overline{M}^0 – M^0 can be K^0 (\overline{sd}), D^0 (\overline{cu}), B_d^0 (\overline{bd}) or B_{ξ}^0 (\overline{bs})
- These can mix into each other
 via short-distance or long-distance processes
- Time-dependent Schrödinger eqn.

$$i\frac{\partial}{\partial t}\left(\frac{M^{0}}{M^{0}}\right) = H\left(\frac{M^{0}}{M^{0}}\right) = \left(M - \frac{i}{2}\Gamma\right)\left(\frac{M^{0}}{M^{0}}\right)$$

– H is Hamiltonian; M and Γ are 2x2 Hermitian matrices

• CPT theorem:
$$M_{11} = M_{22} \& \Gamma_{11} = \Gamma_{22}$$

n Gersho

avour & CF

 $\overline{\mathbf{B}}^{0}$

 π^+

 π^{-}

κ٥

Solving the Schrödinger equation

• Physical states: eigenstates of effective Hamiltonian

$$M_{s,L} = p M^0 \pm q \overline{M}^0$$

p & q complex coefficients that satisfy $|p|^2 + |q|^2 = 1$

label as either S,L (short-, long-lived) or L,H (light, heavy) depending on values of $\Delta m \& \Delta \Gamma$ (labels 1,2 usually reserved for CP eigenstates)

- CP conserved if physical states = CP eigenstates (|q/p| =1)
- Eigenvalues

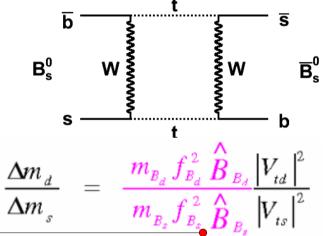
$$\lambda_{s,L} = m_{s,L} - \frac{1}{2}i\Gamma_{s,L} = (M_{11} - \frac{1}{2}i\Gamma_{11}) \pm (q/p)(M_{12} - \frac{1}{2}i\Gamma_{12})$$

$$\Delta m = m_{L} - m_{s} \qquad \Delta \Gamma = \Gamma_{s} - \Gamma_{L}$$

$$(\Delta m)^{2} - \frac{1}{4}(\Delta\Gamma)^{2} = 4(|M_{12}|^{2} + \frac{1}{4}|\Gamma_{12}|^{2})$$

$$\Delta m\Delta\Gamma = 4\text{Re}(M_{12}\Gamma_{12}^{*})$$

$$(q/p)^{2} = (M_{12}^{*} - \frac{1}{2}i\Gamma_{12}^{*})/(M_{12} - \frac{1}{2}i\Gamma_{12})$$
where the product of the second seco


Simplistic picture of mixing parameters

- Δm: value depends on rate of mixing diagram
 - together with various other constants ...

$$\Delta m_{d} = \frac{G_{F}^{2}}{6\pi^{2}} m_{W}^{2} \eta_{b} S(x_{t}) m_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}} |V_{tb}|^{2} |V_{td}|^{2}$$

- that can be made to cancel in ratios

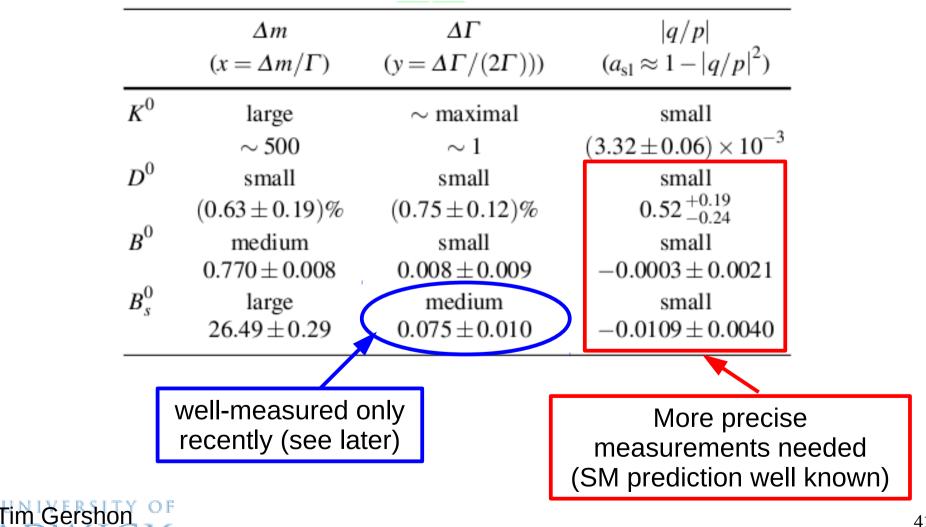
remaining factors can be obtained from lattice QCD calculations

 $\overline{\mathbf{K}}^{\mathbf{0}}$

• $\Delta\Gamma$: value depends on widths of decays into common final states (CP-eigenstates)

– large for K^0 , small for $D^0 \& B_d^0$

Tim Gershon


• $q/p \approx 1$ if $arg(\Gamma_{12}/M_{12}) \approx 0$ ($|q/p| \approx 1$ if $M_{12} << \Gamma_{12}$ or M_{12}

- CP violation in mixing when $|q/p| \neq 1$

$$\left(\epsilon = \frac{p-q}{p+q} \neq 0\right) \qquad 40$$

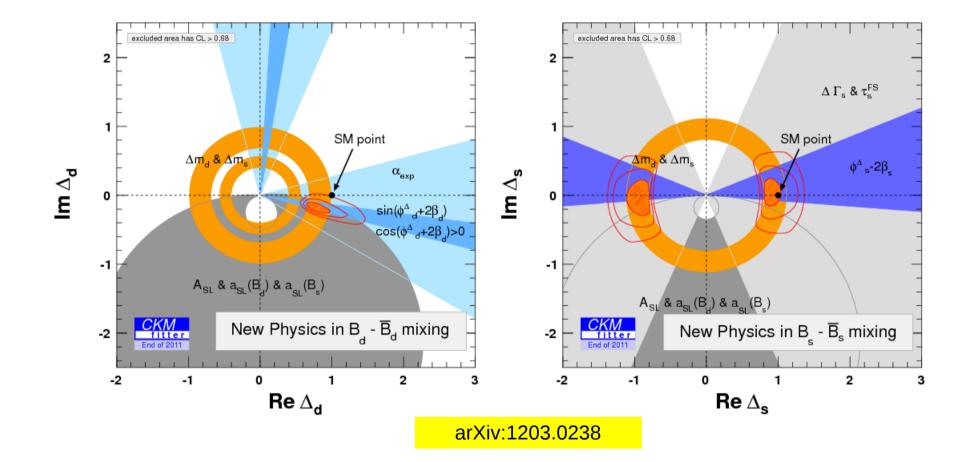
π

Simplistic picture of mixing parameters

Flavour & CPV

Constraints on NP from mixing

- All measurements of $\Delta m \& \Delta \Gamma$ consistent with SM
 - K⁰, D⁰, B⁰_d and B⁰_s
- This means $|\mathsf{A}_{NP}| < |\mathsf{A}_{SM}|$ where $\mathcal{A}_{SM}^{\Delta F=2} \approx \frac{G_F^2 m_t^2}{16\pi^2} (V_{ti}^* V_{tj})^2 \times \langle \overline{M} | (\overline{Q}_{Li} \gamma^{\mu} Q_{Lj})^2 | M \rangle \times F\left(\frac{M_W^2}{m_t^2}\right)$
- Express NP as perturbation to the SM Lagrangian – couplings c_i and scale $\Lambda > m_W$ $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum \frac{c_i^{(d)}}{\Lambda^{(d-4)}} O_i^{(d)}(SM \text{ fields})$
- For example, SM like (left-handed) operators $\Delta \mathcal{L}^{\Delta F=2} = \sum_{i \neq j} \frac{c_{ij}}{\Lambda^2} (\overline{Q}_{Li} \gamma^{\mu} Q_{Lj})^2$

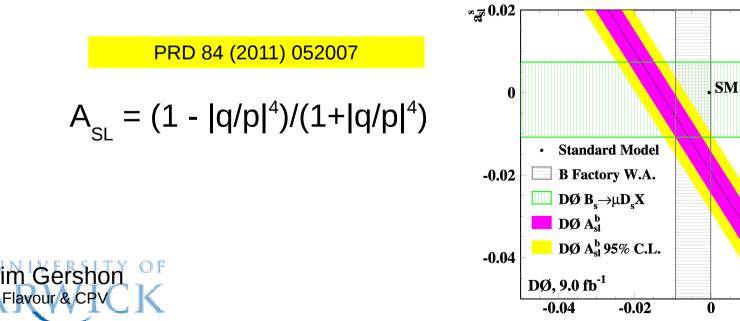

Ann.Rev.Nucl.Part.Sci.	Operator	Bounds on Λ in TeV $(c_{ij} = 1)$ Bounds on c_{ij} $(\Lambda = 1 \text{ TeV})$			Observables	
60 (2010) 355		Re	Im	Re	Im	
arXiv:1002.0900	$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	$1.6 imes 10^4$	$9.0 imes 10^{-7}$	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
	$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	$6.9 imes10^{-9}$	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
	$(\bar{c}_L \gamma^\mu u_L)^2$	$1.2 imes 10^3$	2.9×10^3	$5.6 imes10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	$5.7 imes 10^{-8}$	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
	$(\bar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	9.3×10^2	$3.3 imes10^{-6}$	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
THE Tim Gershon	$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$1.9 imes 10^3$	$3.6 imes10^3$	$5.6 imes10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
W AFlavour & CPV	$(\bar{b}_L \gamma^\mu s_L)^2$		1.1×10^2	7.6	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{b}_R s_L)(\bar{b}_L s_R)$		3.7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}

Same table but bigger ...

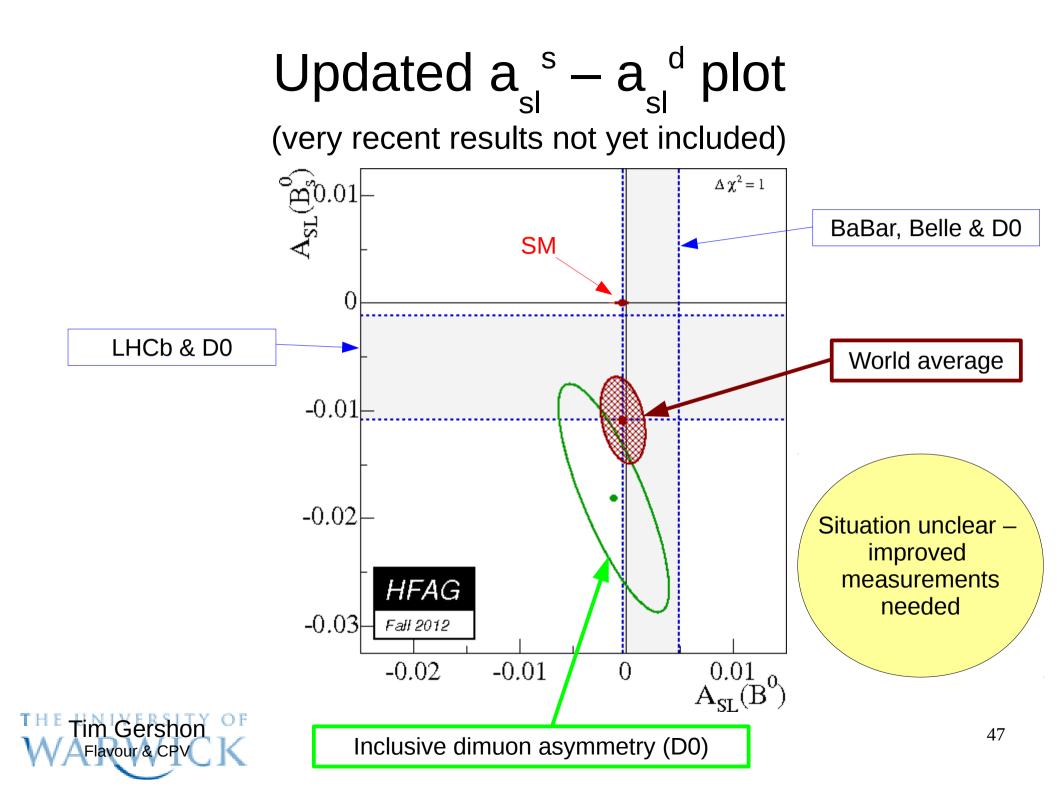
Operator	Bounds on	Λ in TeV $(c_{ij} = 1)$	Bounds on a	Observables	
	${ m Re}$	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	$1.6 imes10^4$	$9.0 imes 10^{-7}$	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	$6.9 imes10^{-9}$	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	$1.2 imes 10^3$	$2.9 imes10^3$	$5.6 imes10^{-7}$	$1.0 imes10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	$3.3 imes 10^{-6}$	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$1.9 imes 10^3$	$3.6 imes10^3$	$5.6 imes10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	$1.1 imes 10^2$		$7.6 imes 10^{-5}$		Δm_{B_s}
$(\bar{b}_Rs_L)(\bar{b}_Ls_R)$	$3.7 imes10^2$		1.3	Δm_{B_s}	

Similar story – but including more (& more up-to-date) inputs, and in pictures

New Physics Flavour Problem


- Limits on NP scale at least 100 TeV for generic couplings
 model-independent argument, also for rare decays
- But we need NP at the TeV scale to solve the hierarchy problem (and to provide DM candidate, etc.)
- So we need NP flavour-changing couplings to be small
- Why?
 - minimal flavour violation?

NPB 645 (2002) 155


- perfect alignment of flavour violation in NP and SM
- some other approximate symmetry?
- flavour structure tells us about physics at very high scales
- There are still important observables that are not yet well-tested

Like-sign dimuon asymmetry

- Semileptonic decays are flavour-specific
- B mesons are produced in $B\overline{B}$ pairs
- Like-sign leptons arise if one of $B\overline{B}$ pair mixes before decaying
- If no CP violation in mixing N(++) = N(--)
- Inclusive measurement \leftrightarrow contributions from both B_d^0 and B_s^0
 - relative contributions from production rates, mixing probabilities & SL decay rates

 $0.02 a_{sl}^{d}$

