QCD Challenges in Non-leptonic B Decays II

Hsiang-nan Li
Academia Sinica, Taiwan
Presented at CERN
June 5, 2008

Can we calculate reliably

- Annihilation penguin
- Color-suppressed tree
 Discrepancies between theory and exp are new physics or not

See Pierini's seminar (June 3)

Quark amplitudes

Color-allowed tree T

Color-suppressed tree C

QCD emission penguin Pe

EW penguin P_{ew}

QCD annihilation penguin Pa

Kπ parameterization

emission + annihilation

$$A(B^+ \to K^0 \pi^+) = P' , \qquad \text{Weak phase}$$

$$A(B_d^0 \to K^+ \pi^-) = -P' \left(1 + \frac{T'}{P'} e^{i\phi_3} \right) , \qquad \qquad \downarrow$$

$$\sqrt{2}A(B^+ \to K^+ \pi^0) = -P' \left[1 + \frac{P'_{ew}}{P'} + \left(\frac{T'}{P'} + \frac{C'}{P'} \right) e^{i\phi_3} \right] , \qquad \downarrow$$

$$\sqrt{2}A(B_d^0 \to K^0 \pi^0) = P' \left(1 - \frac{P'_{ew}}{P'} - \frac{C'}{P'} e^{i\phi_3} \right) , \qquad T' \qquad P' \qquad C'$$

$$\frac{T'}{P'} \sim \frac{\lambda}{P'}, \quad \frac{P'_{ew}}{P'} \sim \lambda \ , \quad \frac{C'}{P'} \sim \lambda^2$$

 $(C_2/C_4)(V_{us}V_{ub}/V_{ts}V_{tb})\sim (1/\lambda^2)(\lambda^5/\lambda^2)\sim \lambda$

K+π-direct CP asymmetry

• Data $A_{CP}(K^+\pi^-)\approx$ -0.1 imply strong phase between P relative to T, $\delta\sim$ 15°.

Sources of strong phase

- Perturbative sources
 BSS mechanism: too small
 Vertex corrections: wrong sign
- Source under debate

 Annihilation penguin
 Can be calculated reliably?

 Can generate sufficient strong phase?
- Nonperturbative sources (not commented)
 Charming penguin
 Final-state interaction

Nonperturbative in QCDF

 Collinear factorization of annihilation penguin gives end-point singularity.

$$\int_{0}^{1} dx \frac{\phi^{P}(x)}{x} = \int_{0}^{1} \frac{dx}{x}$$
 two-parton twist-3 DA

- Parameterized as $X_A=(1+\rho e^{i\phi})\ln(m_b/\Lambda)$
- Fit data by tuning φ

Real in SCETo (Manohar, Stewart 06)

x=0 is removed in zero-bin subtraction

$$\int_0^1 dx_1 \, \frac{\phi_{\pi}(x_1, \mu) - x_1 \phi_{\pi}'(0, \mu)}{(x_1)^2} + \phi_{\pi}'(0, \mu) \, \ln\left(\frac{\bar{n} \cdot p_{\pi}}{\mu^-}\right)$$

Annihilation becomes factorizable

$$A_{Lann}^{(1)}(\bar{B} \to M_1 M_2) = \frac{G_F f_B f_{M_1} f_{M_2}}{\sqrt{2}} \int_0^1 dx \, dy \, H(x, y) \, \phi^{M_1}(y) \phi^{M_2}(x)$$

$$H(x,y) \propto F(x,y) = \left[\frac{1}{\bar{x}^2 y} - \frac{1}{y(x\bar{y}-1)} \right]_{\emptyset}$$

 Internal particles are on shell only at the endpoints, where zero-bin subtraction applies ⇒ real annihilation in SCET

Complex in PQCD

Internal particles are on shell away from endpoints complex annihilation in PQCD

$\pi\pi$ parameterization

Indications of large C

$$B(\pi^0\pi^0) = (1.31 \pm 0.21) \times 10^{-6}$$

greater than PQCD, QCDF predictions

$$A_{CP}(K^+\pi^0) = 0.050 \pm 0.025$$

much different from $A_{CP}(K^+\pi^-) = -0.097 \pm 0.012$ need large imaginary C to change strong phase between tree and penguin

 $S(K_S\pi^0) = 0.38 \pm 0.19$ smaller than $S(c\bar{c}s) = 0.681 \pm 0.025$ need large tree pollution from C

Puzzle is...

- PQCD, QCDF predictions $|C/T| \sim 0.2$ -0.5, $O(\lambda)$, are constrained by $B(\rho^0 \rho^0) = (0.68 \pm 0.27) \times 10^{-6}$
- $A_{CP}(K^+\pi^0)$ implies large $\delta_{C/T}$, i.e., large $\delta_{C/P}$

• Then $\Delta S(K_S\pi^0) \propto \cos \delta_{C/P} \rightarrow 0$

Predictions for ΔS

ΔS	QCDF	pQCD	SCET	$\Delta S Expt$
ϕK_S	$0.02^{+0.01}_{-0.01}$	$0.020^{+0.005}_{-0.008}$		-0.29 ± 0.17
ωK_S	$0.13^{+0.08}_{-0.08}$	$0.153^{+0.03}_{-0.07}$		-0.20 ± 0.24
$\rho^0 K_S$	$-0.08^{+0.08}_{-0.12}$	$-0.187^{+0.10}_{-0.06}$		$-0.07^{+0.25}_{-0.27}$
ηK_{S}	$0.10^{+0.11}_{-0.07}$	_	-0.034±0.165 0.070±0.143	_
$\eta'K_S$	$0.01^{+0.01}_{-0.01}$	_	-0.019±0.008 -0.010±0.010	-0.07 ± 0.08
$\pi^0 K_S$	$0.07^{+0.05}_{-0.04}$	$0.053^{+0.02}_{-0.03}$	0.077 ± 0.030	-0.30 ± 0.19

QCDF: Beneke [see also Cheng, Chua, Soni]

PQCD: Li, Mishima

SCET: Williamson, Zupan (two solutions)

Summary

- Annihilation penguin is a theoretical issue related to predictive power of an approach.
- It is a challenge if predictive power is the goal.
- Opposite conclusions between SCETo and PQCD arise from different treatments of subleading contributions.
- Color-suppressed tree is a real challenge.
- Consistent understanding of C in all modes is difficult in SM.

New physics?

 If data persist, may require exotic EW penguin, i.e., new physics (NP).

```
\Delta \mathcal{A}_{K\pi^0} = 2r_{\rm EW} \sin \delta_{\rm EW} \sin \phi_{\rm EW}, \quad \text{few=NP Pew/P}
\Delta \mathcal{S}_{K_S\pi^0} = -2r_{\rm EW} \cos 2\phi_1 \cos \delta_{\rm EW} \sin \phi_{\rm EW},
```

- Pew is anti-parallel to T+C from isospin symmetry. Its strong phase relative to full P, $\delta_{\rm EW}$ < 90°
- NP phase $\phi_{\scriptscriptstyle FW}$ < 90° improves both.