LHCb upgrade

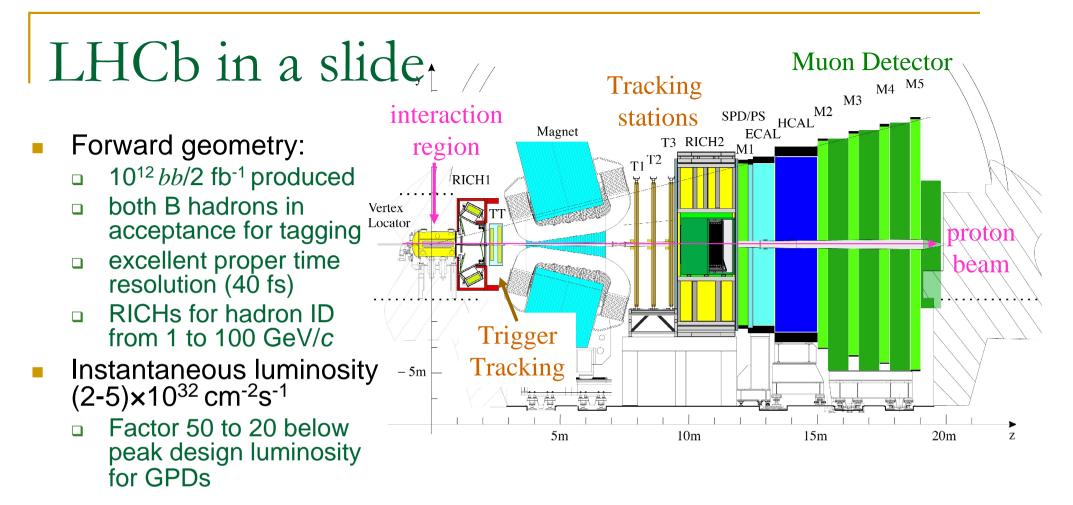
Jim Libby (University of Oxford) on behalf of the LHCb collaboration

Outline

LHCb

Reminder of what is planned by 2013

The upgraded LHCb physics programme


- Unitarity triangle and CPV
- FCNC decays

Upgraded LHCb

- Luminosity goals
- Technical requirements and desires

Conclusion

Including comments on time-scale

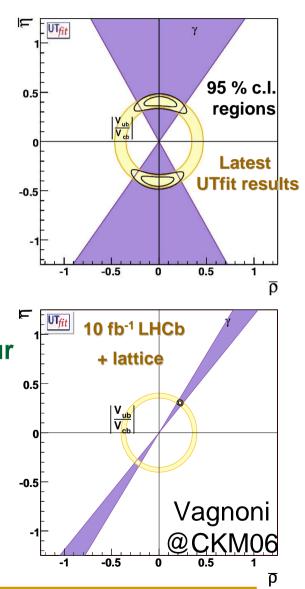
- Level-0: high $p_t l^{\pm}$, hadron or γ hardware trigger 40 \rightarrow 1 MHz
 - effectively $10 \rightarrow 1 \text{ MHz}$
- Software Higher Level Trigger (HLT):
 - ensure high- p_t Level-0 object associated with large impact parameter tracks
 - inclusive and exclusive selections to reduce storage rate to 2 kHz

LHCb programme and goals

Highlights of the physics programme with 10 fb⁻¹

- $\square B_s \rightarrow \mu^+ \mu^- \text{ observed}$
 - BR measured to ~15% if SM

- Mitesh Patel [Tuesday]
- \square B_s mixing phase (β_s) measured with an uncertainty 0.01 rad
 - Current CKMFitter prediction $\sin 2\beta_s = -0.037 \pm 0.002$
 - Tevatron 'favours' non-SM values
 - D0: arXiv:hep-ex/0701012 [hep-ex]
 - □ CDF: arXiv:0712.2397v1 [hep-ex]
- \square γ measured to a few degrees
 - $B \rightarrow DK, B_s \rightarrow D_s K$ and $B \rightarrow D\pi$ [Tree-level determination]
 - $B_{(s)} \rightarrow h^+h^- \text{ exploiting U-spin [Loop-level determination]}$
- $\square B \rightarrow K^* \mu^+ \mu^-: 38k \text{ events with B/S<0.5}$
 - angular analyses sensitive to Beyond the Standard Model (BSM) physics
 Mitesh Patel

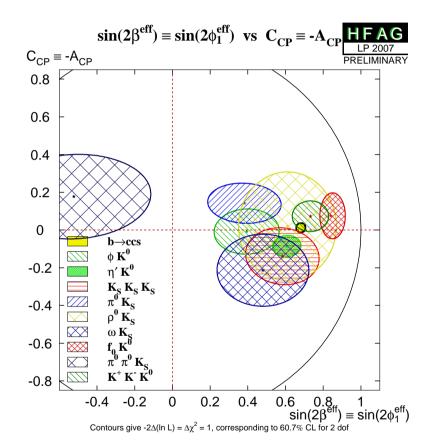

Olivier Leroy [Wednesday]

Angelo Carbone [Wednesday]

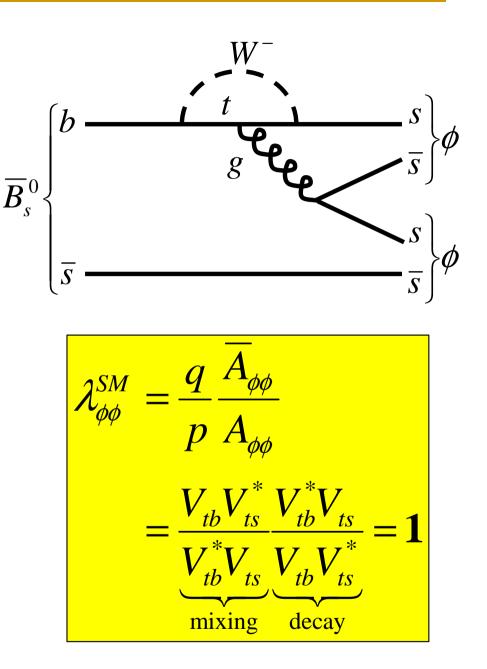
[Tuesday]

The particle physics landscape in 2013?

- All measurements listed on previous slide very sensitive to BSM effects
- Three tangible scenarios in 2013
 - 1. BSM at GPDs and LHCb
 - 2. BSM at LHCb but not at GPDs
 - 3. BSM at GPDs not at LHCb
 - **u** But maybe a few 2-3 σ effects
- Trivial to motivate upgrade in first two
- Also straightforward with scenario 3:
 - New physics at TeV scale must influence flavour observables even with MFV
- There is a scenario 4 (LHC wasteland)
 - No one wants this!
 - However, virtual effects will be the only way to set scale of BSM


The LHCb upgrade

- Three aims:
 - 1. Collect an integrated luminosity of 100 fb⁻¹
 - A factor ten increase in data sample size
 - 2. Increase hadron trigger efficiency by ×2
 - Currently 25-35% for fully hadronic modes compared to 75-80% for modes containing muons
 - 3. At least maintain original LHCb performance
 - Hopefully some areas can be improved:
 - Material, electromagnetic calorimetry.....
- Will discuss the potential physics of such a data set before returning to the instrumentation


Examples of LHCb upgrade physics

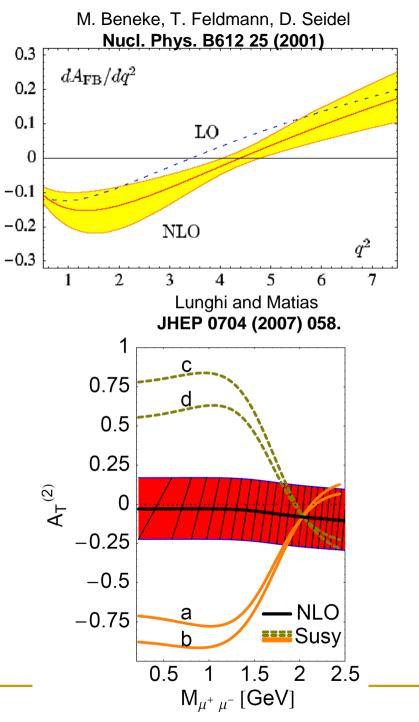
CPV in gluonic penguin

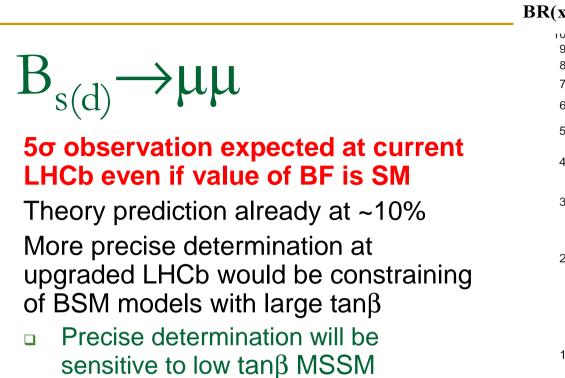
- One of the poster children of a SFF
- Concentrate on the cleanest modes $B_d \rightarrow \phi K^0, \eta \ K^0$ and $K^0 \ K^0 \ K^0$
 - Average discrepancy 0.10±0.06
 - No attempt to add theory
 - 5 σ with current central value an important goal i.e. sin 2 β^{eff}
- $B_d \rightarrow \phi K^0$ most promising at current LHCb
 - Precision at end of LHCb 0.1
 - End of SLHCb 0.025
 - assuming $2 \times \epsilon_{trigger}$
 - same as a SFF but they have the other important modes.....

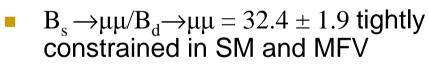
- B_s analogue of $B_d \rightarrow \phi K^0, \eta' K^0 etc$
- Dependence on V_{ts} in both the decay and B_s mixing amplitudes leads to the SM CPV being < 1%</p>
 - for example M. Raidal, PRL 89, 231803 (2002)
- P→VV decay requires full angular analysis to extract CP info
- Simulation studies with background and detector effects
 - 2000(4000) events/fb⁻¹ @ (upgraded) LHCb
 - BSM phase sensitivity of 0.05 at current LHCb
 - Upgraded LHCb sensitivity 0.01 rad.

Toward a sub-degree error on γ

 Extrapolating to 100 fb⁻¹ only consider strategies which are theoretically clean

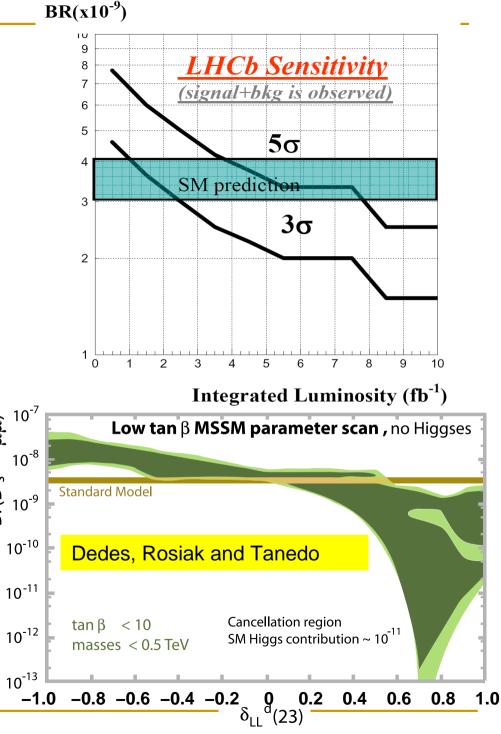

Mode	LHCb (10 fb ⁻¹)	Upgraded-LHCb (100 fb ⁻¹)
D _s K	27 k	540k
D(K _s ππ)K	≤25k	0.5M
D(Kπ) _{fav} K	280k	5.6M


- $B_s \rightarrow D_s K$: statistical scaling leads to **1° uncertainty** for 100 fb⁻¹
- $B \rightarrow D(K_s \pi \pi) K$: statistical scaling leads to **1.2** ° for 100 fb⁻¹
 - need to consider model independent method (Bondar & Poluektov) exploiting $\psi'' \rightarrow DD$ data with $K\pi\pi$ vs CP and $K\pi\pi$ vs $K\pi\pi$
 - 3-5° with final CLEO-c statistics BES-III (x20 stat.) coming soon
 - $B \rightarrow D(hh)K: ADS/GLW 1-1.5^{\circ}uncertainty$
 - largest systematic from detector asymmetry measured in data

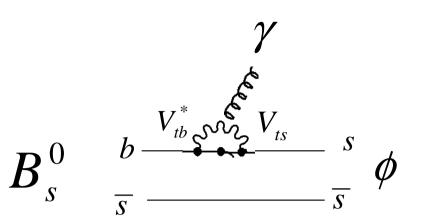

$B \rightarrow K^* \mu \mu$

- A_{FB}(s₀)=0 is not enough:
 - **D** SLHCb $\sigma_{s0}/s_0=2.1\%$
 - $\hfill\square$ Exclusive NLO theory today $\sigma_{s0}\!/s_0\!\!=\!\!9\%$

 - Not unreasonable to expect exclusive error to improve by 2020
- However, transversity angle asymmetry analysis looks extremely promising
 - $\square A^{(2)}_{T} = |A_{\perp} A_{\parallel}| / |A_{\perp} + A_{\parallel}|$
 - $\hfill\square$ σ $(A^{(2)}{}_T$)=0.06 with upgraded LHCb
 - Theoretically clean
 - Constrains small tanβ



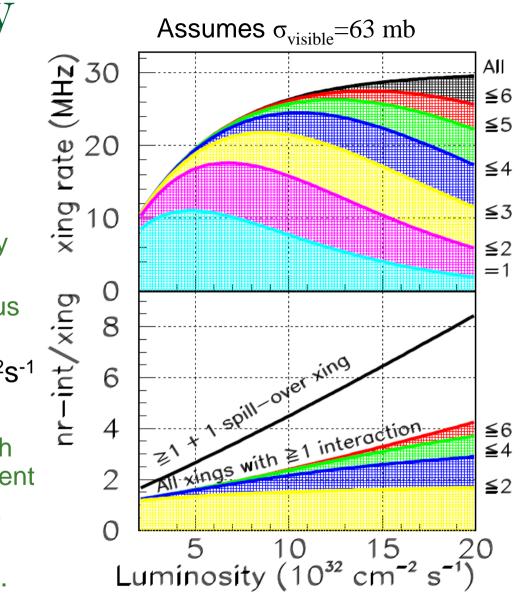
□ a magic number of CMFV (Buras) 🚊


- Matching theory precision is impossible with 100 fb⁻¹
 - observation possible as long as PID can cope with misidentification backgrounds i.e. $B_d \rightarrow \pi\pi$

s→ μμ)

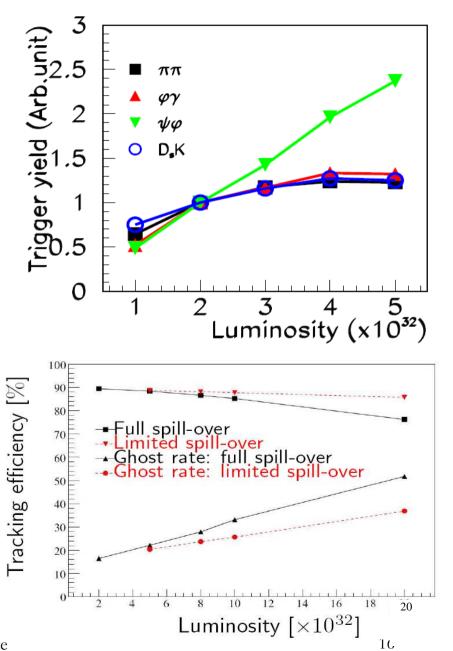
TDCPV in $B_s \rightarrow \phi \gamma$

- $B_s \rightarrow \phi \gamma$ is sensitive to right-handed currents
- Upgraded LHCb sensitivity to $S(B_s \rightarrow \phi \gamma)$ is 0.02
 - But unless 2β_s large the sensitivity to RH currents limited
- However, sensitivity via hyperbolicsine term in decay width:
 - □ **A**^Δ sinh(ΔΓ t / 2)
 - $\Box \quad \Delta \Gamma \text{ Negligible in } B_d \text{ decays}$
 - Upgraded LHCb sensitivity to $A^{\Delta\Gamma}$ is 0.03
 - Reaches the level of theoretical uncertainties

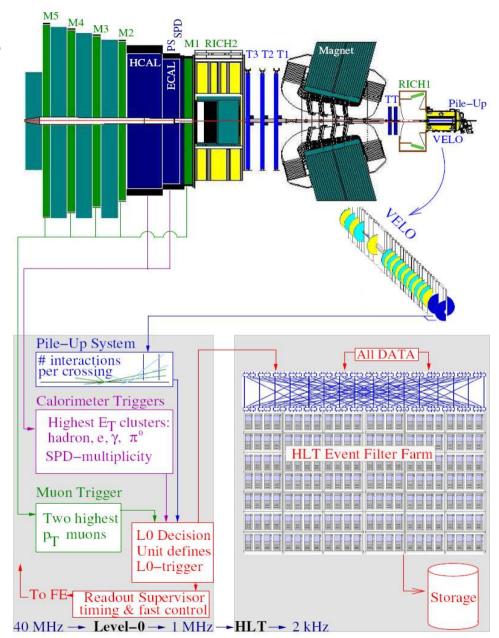

$$A_{CP}(t) = \frac{\Gamma[\bar{B}_q \to \phi\gamma] - \Gamma[B_q \to \phi\gamma]}{\Gamma[\bar{B}_q \to \phi\gamma] + \Gamma[B_q \to \phi\gamma]}$$
$$A_{CP}(t) = -\frac{C\cos(\Delta m_q t) + S\sin(\Delta m_q t)}{A^{\Delta}\sinh(\Delta\Gamma_q t/2) + \cosh(\Delta\Gamma_q t/2)}$$

In SM, C=0 (direct CPV) S=sin $2\psi \sin 2\beta_s$ A^Δ=sin $2\psi \cos 2\beta_s$ where ψ fraction of "wrong" polarization

Technical considerations


LHC and luminosity

- Peak LHC luminosity 10³⁴ cm⁻²s⁻¹
- LHC operating at 2×10³² cm⁻²s⁻¹
 □ 10 MHz of crossings with ≥ 1 int.
- LHC operating at 2×10³³ cm⁻²s⁻¹
 - □ 30 MHz of crossings with \ge 1 int.
 - Number of int./crossing increased by factor of two
 - BUT with spill-over (int. from previous crossing) increased by factor 3
- SLHC peak luminosity ~8×10³⁴ cm⁻²s⁻¹
- Not needed by LHCb, but
 - Possible scheme 25 ns bunches with alternating high (I^H) and low (I_L) current
 - $\Box \quad \text{GPDs: } I^{H} \times I^{H}, I_{L} \times I_{L}, I^{H} \times I^{H}, I_{L} \times I_{L}, \dots \dots$
 - Effective 20 MHz crossing rate
 - $\Box \quad LHCb: I^{H} \times I_{L}, I_{L} \times I^{H}, I^{H} \times I_{L}, I_{L} \times I^{H}, \dots$
 - Select I_L for desired luminosity


Current LHCb and increased luminosity

- Current LHCb no gain for hadron modes when lumi goes above 2×10³² cm⁻²s⁻¹
 - Limitation from L0 trigger
- Radiation damage
 - □ Spec was for less than 20 fb⁻¹
 - $\hfill \square$ Principally affects large η
- Tracking and particle ID:
 - Straws: significant problems from spill-over above 10³³ cm⁻²s⁻¹
 - Hadron PID and tagging OK to ~5×10³² cm⁻²s⁻¹ but degrades with reduced tracking performance
 - Si tracking fine

Current trigger limits

- Level-0 largest E_T hadron, $e(\gamma)$ and μ
- Bottleneck is 1 MHz output rate
 - Thresholds tuned to match this
- At L>10³³ cm⁻²s⁻¹
 - interactions @ 30 MHz so only 3% can be retained
 - Number of int./crossing 2-4
 - Leads to E_T threshold >> M_B!
- Furthermore, desire to improve efficiency for hadrons and photons
 - □ $\varepsilon_{\text{trigger}}$ (B→hadronic) ~ 25-35%
 - □ c.f. $\varepsilon_{\text{trigger}}(B \rightarrow \mu \mu X) \sim 60-70\%$
- Higher Level Trigger
 - Only limitation is CPU and our algorithmic ingenuity
 - (Former) improves with Moore's Law

Hardware path to upgrade

Address trigger bottleneck:

- Perform whole trigger in CPU farm.: read out 40 MHz
- Preliminary studies:
 - Event building at 40 MHz OK with suitable CPU
 - Hadron trigger efficiency can be increased by incorporating vertex and coarse momentum early (c.f. BTeV)
 - However, all subsystems front-end electronics need to be replaced
 - New RICH photon detectors
 - Do we want have a single RICH to reduce X_0 ?

Radiation:

- Vertex detector replacement already required after ~6 fb⁻¹
 - Upgrade to rad. hard Si strixels/pixels R&D already begun
- Inner region of calorimeter:
 - increase segmentation of current Shaslik technology
 - move to crystals \rightarrow improved $\sigma(E)/E$

Occupancy ×4 in outer tracker

- Only two fold without spillover \rightarrow faster gas?
- Increase inner Si tracker coverage
- More radical: SciFi tracker!

MUCH R&D TO BE DONE

Conclusion

- There is a strong case to continue flavour physics even without clear NP signatures by 2013
- To operate at 10 × luminosity LHCb requires significant upgrades to:
 - Trigger and front-end
 - Silicon vertex detector
 - Straw tracking stations
- Does not require any luminosity upgrade
 - compatible with SLHC running
- Schedule
 - □ 2008: EoI submitted to LHCC
 - CERN/LHCC/2008-007
 - R&D started
 - 2010 decisions on upgrade instrumentation and write TDR
 - □ ~2013 upgrade detector
 - 2015-2020 gather 100 fb⁻¹