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Introduction

• Focus on inclusive decays, in particular

– B̄ → Xc l ν̄l

– B̄ → Xu l ν̄l

– B̄ → Xs γ

• QCD effects inclusive decays

– pQCD corrections to triple differential decay

– matrix elements

– endpoint region

• phenomenological extraction of CKM parameters
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B → Xq l ν̄ in the OPE

Effective Fermi weak hamiltonian (gluons with virtualities between mW and mb)

HW =
4GF√

2
Vqb q̄γµPLb l̄γµPLνl

the most general distribution is the triple differential distribution, expressed f.i. as

dΓ

dq2dEldEνl

= G2
F |Vcb|2

∫
Lαβ W αβdφ(pl) dφ(pνl)δ(El − p0

l )δ(Eνl − p0
νl
)δ(q2 − (pl + pνl)

2)

dφ is the phase space in 4 dim

The hadronic tensor is

Wαβ = −
1

π
ImTαβ

where

Tαβ = −i

∫
d4xe−iq·x< B̄|T [J†α(x)Jβ(0)]|B̄ >

2mB

The time ordered product of currents is expanded in a series of local operator by OPE, which
corresponds to an expansion of the rate in inverse powers of mb
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Up to second order, HQET operators

< O3 > =
1

2mB
< B̄(pB)|̄bvγ

µvµbv|B̄(pB) >= 1

< Okin > =
1

2mB
< B̄(pB)|̄bv(iD)2bv|B̄(pB) >= −µ2

π

< Omag > =
1

2mB
< B̄(pB)|̄bv

g

2
σµνG

µνbv|B̄(pB) >= µ2
G

where b(x) = e−imbvxbv(x)

1/mb corrections are absent, as there is no independent gauge-invariant operator of dim 4 in
OPE (bound state effects strongly suppressed)

• The nonperturbative input is given by the matrix elements of local operators

• Wilson coefficients of the operators are independent of the external states: can be
calculated perturbatively using partonic initial and final states



Recently calculated O(α2
s) corrections to b → c l ν̄l decay rate at fully differ-

ential rate (Melnikov, 2008)

Arbitrary cuts on kinematical variables of the decays products can be imposed

Computation of differential distribution has additional complications, due to the presence of
IR singularities that are cancelled in the total rate.

• new techniques for multiloop computations, that deal numerically with soft and collinear
kinematic configurations (Anastasiou, Melnikov, Petriello 2003)

• proper treatment for γ5 in d = 4− 2ε dimensions (Larin 1993)

• Results in the pole mass scheme

For a consistent high precision analysis, also O(αs) corrections to Wilson coefficients of
non-perturbative kinetic and chromomagnetic operators are required

SD contribution to µ2
π known at order O(αs) (Becher , Boos, Lunghi, 2007);

for µ2
G still at tree level.

At 1/m3
b , two additional hadronic parameters (ρD and ρLS)

Five additional classified at 1/m4
b : their effect has been estimated completely negligible on

the central value of Vcb (Dassinger, Mannel, Turczyk, 2007)
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Duality Effects

A quark level calculation should at least approximate hadronic rates

hadronic observables coincides with what obtained in quark-gluon language, provided all
possible QCD corrections are accounted for

the general ideas of OPE applies to quantify non perturbative effects in HF physics

OPE-treatable HF decays evolve in two steps:

• hard dynamic process of the heavy quark decay,

• when the quark originally present are far removed from each other, the composition of
the final hadrons

One then expects that the second step will not determine gross characteristic like total rates,
directions of energetic jets etc.

violation of local duality is related to the asymptotic nature of power expansion in OPE;
viceversa OPE can impose constraints on possible local duality violations

Duality violation effects are hard to classify; in practice they would appear as unnaturally
large coefficients of higher order terms in 1/mb expansion.

Up to terms of order 1/m3
b the coefficient have size as expected a priori by theory
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Endpoint spectrum

Higher dimensional operators in OPE are only suppressed for sufficiently inclusive observables.
In the resonance regime, where m2

X ≤ Λ2, the decay is no longer inclusive and OPE breaks
down.

In the endpoint region,

EX � mX

the integration does not provide the smearing over final hadronic masses needed, even far
from the resonance regime.

In the endpoint region, the light quark produces a jet of collinear particles accompanied by
soft radiation, from which we expect large perturbative and non perturbative corrections

The description inside the endpoint region can be indispensable due to background reduction
cuts

In the threshold region

m2
X ∼ EX ΛQCD

an inclusive description is still possible, with the introduction of a non perturbative distribution
function (shape function) whose form is unknown
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Shape function in a nutshell

In pHQET, pb = mbv + k; by expanding the k dependence in the denominator of the light
quark quark propagator, we produce terms in the forward matrix elements

kp

((mbv − q)2 −m2
q + iε)p+1

This results in factors of δ(p−1)(1− y) in the electron energy spectrum

dΓ

dy
∝ θ(1− y)(λ0 + λ2 + . . . ) + δ(1− y)(λ2 + . . . ) + δ′(1− y)(λ2 + λ3 + . . . ) + . . .

+ δ(n)(1− y)(λn+1 + λn+2 + . . . ) + . . .

where λ = O(Λ/mb), y = 2El/mb

Integrating with a smooth weight function, one obtains well behaved results, such as the
total decay rate and the average lepton energy

Shape function is a non perturbative object taking care of terms in the theoretical spectrum
that become singular in the limit y → 1
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Leading Order Shape function

In HQET

Tµν = −i

∫
d4x eiQ·x〈B(v)|T b̄v(x)Γ

†
µ q(x) q̄(0)Γν bv(0)|B(v)〉

=

∫
d4x eiQx〈B |̄bv(x)Γ

†
µ S(x|0)Γνbv(0)|B〉 (1)

Q ≡ pB − q, S(x|0) light quark propagator.

At leading order in Λ/mb, in the threshold region Q2 = m2
X ∼ EX ΛQCD

S(Q + iD) =
1

iD̂ + Q̂−mq + i0
'

Q̂

Q2 + 2iD ·Q + i0
+ O

(
Λ

mb

)
At leading order in Λ/mb, the shape function f(k+) can be defined as

f(k+) ≡
1

2mB
〈BQ | b̄v δ(k+ − iD+) bv | BQ〉

D+ ≡ n ·D, n2 = 0, n · v = 1

Represents the probability that the heavy quark inside the B-meson has a residual momentum
with a plus component k+

The matrix element of this non local operator only resums the most singular terms of the
OPE in the shape function region.
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The perturbative QCD corrections to dΓ/dy also become singular as y → 1.
Final gluon radiation is strongly inhibited in the phase space regions where the observed
final state obtains its maximum energy, therefore opening the way to soft and collinear
singularities.

The αs expansion breaks down in the endpoint region due to presence of threshold logarithms.
They have to be resummed to make a prediction for the shape of the electron spectrum in
the endpoint region.

Naively, after perturbative resumming, the effects of the Fermi motion of the heavy quark
could be included by convoluting with the perturbative resummed differential rate, f.i.

dΓ

dEl

=

∫
dk+f(k+)

dΓp

dEl

The addition of the structure function resums the singular corrections and moves the endpoint
of the spectrum from E = mb/2 to the physical endpoint MB/2.

The shape function is a universal property of B meson at leading order
It can be measured in the radiative decay B̄ → Xs γ and the results applied to the calculation
of the B̄ → Xu l ν̄l (or independent relation between observable) (f.i Mannel, Recksiegel, 1999)
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Reality check: you sweat for:

• corrections from less singular terms suppressed by Λ/mb.

At each order in 1/mb sub-leading shape functions arise, and differ in semileptonic and
radiative decays.

One can try to estimate violation of universality by using models of subleading SF

• inclusion of perturbative corrections

The simple convolution is not valid beyond leading order, due to large perturbative
corrections in the usual definition of the shape function (Bauer, Manohar,2004, Bosch
et al,2004, Korchemsky, Sterman, 1994, Akhoury, Rothstein 1996,...)

Updated approach (Bosh, Lange, Neubert, Paz, 2005)
differential rate written in terms of structure function that factorize according to a scale
hierarchy

dΓ ∼
∑

i

Hi(Q, µ) Ji(
√

QΛ, µ)⊗ Si(µ)

perturbatively calculable hard coefficient H, and jet function J; shape functions Si as-
sociated with soft radiation.

Moreover, in the perturbative resumming formulas, a prescription is needed to regulate
integration, that extend up to Landau pole dominated region.
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• mass schemes

Consistent mass and renormalization scheme also for HQE parameters

Pole scheme: calculationally most convenient, but plagued by large misbehaved higher-
order corrections

Bad perturbative behaviour improved in MS scheme. HQET power counting compli-
cated by the presence of a residual mass that is not finite in the HQET limit

Moreover, a scale of order of the b quark mass is unnaturally high, due to the presence
of typical scales significantly below, while a lower scale of the order of 1 GeV is under
poor control

Alternative schemes: low subtracted mass schemes: non perturbative contribution to
the heavy quark pole mass can be subtracted by making contact to some physical
observable

Care in converting from one mass scheme to another due to the presence of truncated
perturbative expression (HFAG results for m1S

b underestimated, Neubert 08)

• moments analysis

SF unknown, but first few moments known in terms of operator matrix elements∫
dk+kn

+f(k+) = 〈BQ | b̄v (iD+)n | BQ〉

SF and its moments satisfy different RG equations and are not simply related: relations
between SF moments and the non perturbative parameters of the HQE known to two
loop order in the SF scheme (Neubert 2005)
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Fit strategy

two step process

• 1) Global fit of parameters |Vcb|, mb, mc, µ2
π, µ2

G to exp data on moments of the lepton
energy and invariant hadronic mass spectra in B̄ → Xc l ν̄l and of the photon energy
spectrum in B̄ → Xs γ (fixed renormalization and mass scheme)

• 2) Extract the shape function from the B̄ → Xs γ photon spectrum and use this informa-
tion to predict B̄ → Xu l ν̄l decay distributions, or employ shape functions independent
relations between weighted B̄ → Xs γ and B̄ → Xu l ν̄l spectra

Actual more complete fit: in the kinetic scheme, includes WA effects, calculated O(β0α2
s), no

Sudakov resumming (hard cut-off, no soft divergencies, softer collinear divergencies)(Gambino,
Giordano, Ossola, Uraltsev 2007) Value used for mb = 4.613 GeV, in agreement with step 1)

Recently, the correctness of step 1) has been questioned
an analysis based only on moments of B̄ → Xc l ν̄l has been proposed (Neubert, 08).

B̄ → Xs γ is argued unreliable, because of

• SF effects in the region of measurements

• standard OPE factorization (outside the endpont region) argued to be invalid, presence
of uncalculable non perturbative theoretical contributions, starting at order Λ/mb in the
HQE (Lee, Neubert, Paz, 2007)
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B → Xs γ

NNLO contribution has been completed (M.Misiak, H.M.Asatrian, K.Bieri, M.Czakon, A.Czarnecki,
T.Ewerth, A.Ferroglia, P.Gambino, M.Gorbahn, C.Greub, U.Haisch, A.Hovhannisyan, T.Hurth,
A.Mitov, V.Poghosyan, M.Slusarczyk, M.Steinhauser 2006)

the first estimate of the branching ratio

BR(B− > Xsγ) = (3.15± 0.23) 10−4 Eγ > 1.6 GeV

in the B-meson rest frame. The four types of uncertainties: non-perturbative (5%), para-
metric (3%), higher-order (3%) and mc-interpolation ambiguity (3%) have been added in
quadrature to obtain the total error.

Recent analyses have identified a new class of non local power corrections to the total decay
rate, and a naive guess of effect is a small reduction of the total rate of 5% (Lee, Neubert,
paz, 2007). More work in progress (Lee, Neubert, Paz)
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Alternative approaches

Recently developed two alternative approaches with no shape function.

Both based on Sudakov resumming and show that definite prediction can be derived from
perturbation theory despite its divergent nature

Exploit the way in which the Sudakov resumming can provide guidance in parameterizing non
perturbative Fermi motion effects

In the Mellin space, at N →∞, the triple differential distributions factorize to all orders

dΓ ∼ HJS

The function J and S in the partonic process satisfy Sudakov evolution equations

The soft factor S depends on the softest scale and includes non perturbative corrections

• Dressed Gluon Exponentiation (Gardi et al. 2006))

Solutions of Sudakov evolution equations, are formulated at all order as a scheme
invariant Borel sum. The DGE prescription consist into integrating the Borel integral
by using the principal value prescription. A definite prediction for the parametric form
of the power corrections emerge from the resummation formalism and parameters are
fitted by data.

• Analytic Coupling scheme (Aglietti, Ferrera, GR, Di Lodovico 2007,2008)

It introduce nonperturbative effects by introducing an effective, infrared-safe, low en-
ergy QCD coupling constant, which mimics, in this specific threshold framework, non
perturbative Fermi motion effects
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Analytic coupling model

Analytic coupling model: assume that B fragmentation into the b-quark and the spectator
quark can be described as a radiation process off the b with a proper coupling

• starts from universality of perturbative threshold resummation

• non-perturbative effect (Fermi motion) relegated into an effective QCD coupling, which
is inserted in the standard soft-gluon resummation formulas

• the coupling is universal (radiative decay processes as well as B fragmentation processes)
and it can be constructed on the basis of analyticity arguments

• no shape function (and consequently subleading uncertainty)

• no free parameters

• the whole fragmentation process is described in a perturbative framework, no double
counting
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Soft and collinear resumming

In perturbation theory (i.e. with an on-shell b quark instead of an external B meson) the
shape function has a resummed expression in N moment space

fN = exp

∫ 1

0

dy
(1− y)N−1 − 1

y

{∫ µ2
0F

Q2y2

dk2

k2
A[αS(k

2)] + D[αS(Q
2y2)]

}
,

y ≡ (EX − pX)/(EX + pX) = −k+/(EX + pX) ' m2
X/(4E2

X)
µ0F ≈ Q is a factorization scale (hard scale Q).

soft radiation collinearly and non collinearly enhanced

A(αS) = A1αS + A2α
2
S + · · · D(αS) = D1αS + D2α

2
S + · · ·

soft scale Q2y2, goes to zero very fast for y → 0+, i.e. in the threshold region.

When the soft scale becomes of the order of the hadronic scale, the coupling leaves the
perturbative phase and the resummation scheme breaks down: the shape function cannot be
computed in perturbation theory any more.

Resummed perturbation theory signals a non-perturbative effect coming into play, namely
Fermi motion.
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The shape function is related to full QCD via a coefficient function of the form

CN = exp

∫ 1

0

dy
(1− y)N−1 − 1

y

{∫ Q2y

µ2
0F

dk2

k2
A[αS(k

2)] + B[αS(Q
2y)]

}
, (2)

where B(αS) = B1αS + B2α2
S + · · · is a function describing hard small-angle radiation.

hard collinear emissions;

collinear scale Q2y, which goes to zero much slower than the soft scale in the threshold
region y → 0+ (Q2y2 ≈ Λ2, ⇒ Q2y � Λ2)

the coefficient function is still computable in perturbation theory.

The QCD form factor ΣN is the product of the two above factors:

ΣN = CN fN .

the dependence on the (unphysical) factorization scale µ0F cancels in the product.
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Relation between B fragmentation and B decay

In B fragmentation,

e+ e− → Z → B + X

a similar factorization formula holds in PT (Mele, Nason, 1991, Collins, 1998)

the initial condition of the fragmentation function Dini has the same resummed expression as
the shape function:

Dini
N = fN .

explicitly checked up to and including the single logarithm at two loop by Feynman diagram
computation (the coefficient D2 is the same)
believed to be true to all orders by a general argument based on Wilson lines (Gardi, 2005)

Of course the perturbative shape-function includes soft effects from perturbative origin only
(as soft gluon radiation), but cannot describes truly non-perturbative effects.

Model ideas

• to introduce non perturbative effects in the resumming formula itself, by a proper
effective QCD coupling

• to assume that the non-perturbative effects in the shape function and in the initial frag-
mentation function can be described by the same effective low-energy QCD coupling.
It follows that these two functions must be the same, and allows to use more precise
B fragmentation data to tune the model to be used for the extraction of |Vub|
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Prescription for the effective coupling

minimal possible ”shifting” from standard QCD coupling

αlo
S (Q2) =

1

β0 logQ2/Λ2
QCD

,

the effective coupling

1. has the same physical discontinuity as αS along the cut Q2 < 0 (related to the decay
of a time-like gluon into secondary parton);

2. is analytic elsewhere in the complex plane (thus removing the unphysical simple pole
for Q2 = Λ2–“Landau ghost”)

3. includes secondary emissions off the radiated gluons

α̃S(k
2
⊥) =

i

2π

∫ k2
⊥

0

dsDiscs
ᾱS(−s)

s

where ᾱS is the ghost–less coupling built according to the preceding prescriptions.

• with αS instead of ᾱS, it is the standard for fixing the scale k⊥

• The −iπ terms in the integral over the discontinuity — i.e. the absorptive effects
— are not neglected
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power corrections in the analytic coupling model

The effective coupling is supposed to model the evolution of a time-like gluon (emitted from
a primary quark) into a jet.

By requiring only the same discontinuity of the standard coupling, at one loop:

ᾱS(Q
2) =

1

β0

[
1

logQ2/Λ2
−

Λ2

Q2 − Λ2

]
the same discontinuity for Q2 < 0; Landau pole subtracted; the last term produces a series
of power corrections expanded for Q2 � Λ2.

Mellin transform y → N and the inverse Mellin transform N → y have to be computed exactly
(in numerical way), in order to keep the effects of the power corrections.

fragmentation data are better described by a specific variant of the above model, which
include the absorptive parts of the gluon polarization function (the well-known “−iπ” terms)
into the effective coupling: that amounts to a resummation of constant terms to all orders.

non perturbative power corrections of the types (Λ/Q)p are included, but instead of fixing
the numerical coefficients with an ansatz for the profile of the shape-function and fitting to
the B decays data, they are fixed with an ansatz for the low energy QCD coupling
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Experimental kinematical distributions for |Vub| extraction

|Vub| is determined from measured semileptonic branching fractions, in limited regions of the
phase–space. The distribution looked at are

1. lepton energy (E`)

• BABAR(2006), Belle (2004) and CLEO (2002) with 2.3 GeV < E` < 2.6 GeV

2. invariant mass of the hadron final state (mX)

• BABAR(2007) with mX < 1.55 GeV and Belle (2005) with mX < 1.7 GeV

3. p+ ≡ EX − | ~pX |, EX and ~pX being the energy and 3–momentum of the hadronic system

• BABAR(2007), Belle (2005) with p+ < 0.66 GeV

4. (mX , q2): two dimensional distribution in the plane of mX and the transferred squared
momentum q2 to the lepton pair

• BABAR(2007), Belle (2004, 2005) with mX > 1.7 GeV and q2 < 8 GeV2

5. (E`, s
max
h ): two dimensional distribution in E` and smax

h , the maximal m2
X at fixed q2 and

E`

• BABAR (2005) with E` > 2.0GeV and smax
h > 3.5GeV2.
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Extracted values of |Vub| for all the uncorrelated analyses and their
corresponding average

The first column shows the uncorrelated analyses, the second column shows the correspond-
ing values of |Vub|, the third column shows the criteria for which ∆B is available.

The final row shows the average value of |Vub|.

The errors on the |Vub| values are experimental and theoretical, respectively. The experimental
error includes both the statistical and systematic errors.

Analysis |Vub| (10−3) ∆B criteria
BABAR (E`) 3.44± 0.14 +0.25

−0.26 E` > 2.3GeV

Belle (E`) 3.18± 0.16 +0.23
−0.24 E` > 2.3GeV

CLEO (E`) 3.47± 0.20 +0.25
−0.26 E` > 2.3GeV

BABAR (mX) 4.01± 0.20 +0.27
−0.28 mX < 1.55 GeV

Belle (mX) 3.91± 0.26 +0.26
−0.27 mX < 1.7 GeV

Belle (mX , q2) 3.93± 0.42 +0.25
−0.26 mX < 1.7 GeV, q2 > 8 GeV2

BABAR (E`, s
max
h ) 3.87± 0.26 +0.25

−0.26 E` > 2.0 GeV, smax
h < 3.5 GeV2

Average 3.78± 0.13 +0.24
−0.24
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|Vub| values for the uncorrelated analyses and their average

]-3 10×|  [ub|V
2 3 4

]-3 10×|  [ub|V
2 3 4

) lBaBar (E
 0.14 + 0.25 - 0.26±3.44 

) lBelle (E
 0.16 + 0.23 - 0.24±3.18 

) lCLEO (E
 0.20 + 0.25 - 0.26±3.47 

) XBaBar (m
 0.20 + 0.27 - 0.28±4.01 

) XBelle (m
 0.26 + 0.26 - 0.27±3.91 

) 2, qXBelle (m
 0.42 + 0.25 - 0.26±3.93 

) h
max, slBaBar (E

 0.26 + 0.25 - 0.26±3.87 

Average  
 0.24± 0.13 ±3.78 
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Sources of theoretical errors

• the direct method

B [p ∈ (a, b)] = τB Γ [B → Xu l νl, p ∈ (a, b)]

vs

B [p ∈ (a, b)] = BSL

1+Rb/c

Γ[B→Xu l νl, p∈(a,b)]
Γ[B→Xu l νl]

is used to determine the error on the value of |Vub|, extracted with the alternative
method. Since the two methods basically involve different inclusive quantities, this
error allows a cross–check of their evaluations (f.i. b and c masses adopted)

• inclusive quantities are computed both in the MS and pole schemes for the quark
masses. Since in general higher–order corrections are different in the two schemes, that
should provide an estimate of the size of unknown higher–order effects

• the order at which the rate is computed is varied from the exact NLO to the approximate
NNLO; that should provide a reasonable estimate on the truncation error

• all the parameters which enter in the computation of |Vub| are varied within their errors,
as given by the PDG

the modelling of the threshold region is fixed in the model because it has no free parameters.

The error on the modelling of the threshold region can only be estimated by considering
different decay spectra, in which presumably threshold effects enter in different ways.
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Vub averages for different analysis categories

The errors on the |Vub| values are experimental and theoretical, respectively. The experi-
mental error includes both the statistical and systematic errors

|Vub| for endpoint analyses (10−3)
BABAR (E`) 3.44± 0.14 +0.25

−0.26 E` > 2.3 GeV

Belle (E`) 3.18± 0.16 +0.23
−0.24 E` > 2.3 GeV

CLEO (E`) 3.47± 0.20 +0.25
−0.26 E` > 2.3 GeV

Average 3.40± 0.15 +0.24
−0.23

|Vub| for mX analyses (10−3)
BABAR (mX) 4.01± 0.20 +0.27

−0.28 mX < 1.55 GeV

Belle (mX) 3.91± 0.26 +0.26
−0.27 mX < 1.7 GeV

Average 3.97± 0.16 +0.25
−0.25

|Vub| for (mX , q2) analyses (10−3)
BABAR (mX , q2) 4.11± 0.27 +0.26

−0.27 mX < 1.7 GeV, q2 > 8 GeV2

Belle (mX , q2) 4.19± 0.37 +0.26
−0.28 mX < 1.7 GeV, q2 > 8 GeV2

Belle (mX , q2) 3.93± 0.42 +0.25
−0.26 mX < 1.7 GeV, q2 > 8 GeV2

Average 4.10± 0.21 +0.25
−0.25

|Vub| for P+ analyses (10−3)
BABAR (P+) 3.43± 0.22 +0.24

−0.30 P+ < 0.66

Belle (P+) 3.71± 0.31 +0.26
−0.32 P+ < 0.66

Average 3.50± 0.18 +0.23
−0.29
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BLNP DGE GGOU AC BLL

Input parameters

scheme SF MS kinetic MS 1S
(only b → c`ν (b → c`ν + b → sγ

moments) moments)

mb (GeV) 4.707 +0.059
−0.053 4.20 ±0.07 4.613 +0.022

−0.027 4.20 ±0.07 4.70 ±0.03

µ2
π (GeV2) 0.216 +0.054

−0.076 - 0.408 +0.017
−0.031 - -

Ref. |Vub| values

Ee CL 3.53 ± 0.41+0.38
−0.32 3.86 ± 0.45+0.28

−0.27 3.71 ± 0.43+0.25
−0.39 3.47 ± 0.20+0.25

−0.26 -

MX , q2 BE 3.98 ± 0.42+0.34
−0.29 4.44 ± 0.47+0.23

−0.21 4.16 ± 0.44+0.33
−0.34 3.93 ± 0.42+0.25

−0.26 4.71± 0.50+0.35
−0.35

Ee BE 4.37 ± 0.41+0.36
−0.30 4.81 ± 0.45+0.22

−0.21 4.56 ± 0.42+0.23
−0.31 3.18 ± 0.16+0.23

−0.24 -

Ee BA 3.90 ± 0.22+0.36
−0.30 4.30 ± 0.29+0.25

−0.24 4.08 ± 0.23+0.23
−0.33 3.44 ± 0.14+0.25

−0.26 -

Ee, s
max
h

BA 3.95 ± 0.27+0.42
−0.36 4.43 ± 0.30+0.37

−0.36 - 3.87 ± 0.26+0.26
−0.26 4.71± 0.50+0.35

−0.35

MX BE 3.66 ± 0.24+0.29
−0.24 4.29 ± 0.28+0.28

−0.24 3.89 ± 0.26+0.19
−0.22 3.91 ± 0.26+0.26

−0.27 -

MX BA 3.74 ± 0.18+0.33
−0.28 4.56 ± 0.22+0.30

−0.30 4.01 ± 0.19+0.26
−0.29 4.01 ± 0.20+0.27

−0.28 -

MX , q2 BA - - - - 4.93± 0.32+0.36
−0.36

MX , q BE - - - - 5.02± 0.39+0.37
−0.37

Average 3.99 ± 0.14+0.32
−0.27 4.48 ± 0.16+0.25

−0.26 3.94 ± 0.15+0.20
−0.23 3.78 ± 0.13+0.24

−0.24 4.92± 0.24+0.38
−0.38
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