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Advantages of TITUS:
a) the right target nuclei
b) similar acceptance
c) similar flux profile
d) plus, with Gd doping...
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£ = 88% (+10%)

(Matthew’s talk)

Exciting, but somewhat untested
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18% of muons escape the tank

{{par_xEnd"part_xEmnd}+(part_yEnd*part_yEnd)):part_zEnd [par_pid==13 && part_processEnds<0O}

red: mu- leave tank
blue: mu+ leave tank
green: mu- stop in tank
purple: mu+ stop in tank

courtesy of Matthew Malek
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Design considerations

Magnetize =» charge and momentum

Vary side coverage 1.5 Tesla (near saturation in cheap steel)
Do we stop a useful fraction ~150cm of Fe
of muons given the cost?
g —_—

neutrino beam

=)

~30 Fe+scintillator

modules
~50cm
Grade downstream Fe thickness?
Constant scintillator thickness 1cm = 5cm
Total (x layer + y layer) = 1.5 cm ~1 euro/ kg

20 CHF / SiPM + 20 CHF / electronics channel
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MRD tracks of muons which escape TITUS tank

A simulation with 150cm end Fe and 75% side coverage of 50cm of Fe -

* range-out and stop in the MRD
* penetrate through the MRD

* miss the MRD

150cm, 75%, 33.3%): | stops in MRD
n
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And from two more projections...

150cm, 75%, 33.3%): | stops in MRD
n
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Model of the MRD y
cos 30° = 3/2
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. stopped in MRD

. penetrated MRD

missed MRD

1000

o 1 2 3 4 5 6 7 8 9 10
E, (GeV)

Aside
Momentum for the stopping sample:

4000

3500
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For e.g. 5 cm iron planes, sample energy at 70 MeV

1

~70% of muons are stopped

In 150cm of Fe
muons lose about 2 GeV

1 2 3 4 5 6

E, as the muon leaves the tank (GeV)
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Optimizing efficiency for stopping muons, and cost
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Optimizing efficiency for stopping muons, and cost
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Curvature in the magnetic field

The uniform magnetic field B = 1.5T is in the z direction
The particle moves along a curve of length s in the (x,y) plane

dp./dt = B q ds/dt
ApL=BqAs

Take uniform steps of As=1cm
ApL = 4.5 MeV/c (for every cm)

And hence the angle curved, depending on E at the time

AE using most probable Landau-Vavilov value
(Bethe overestimates due to long tails)

Charge identification for the muon if

6 > Multiple Scattering

A magnetized muon range detector for TITUS 13



inefficiency
1-p
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angle of deflection
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Xo=1.757cmin Fe
Multiple Scattering X, = 50.31 cm in polyethylene

(Xo/ Xo)% = 1.9%

13.6 MeV
By = 7 c 2/ x /Xy [1 + D.DSSIH(:E/XO)]
Bep
1 1

rms

o, rms 0 _ = 90

Y plane = \/§ plane \/g

A
-
Y

Y
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Two methods for charge recon

65
60

55

dllllllll|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

50

100
prob from v

2nd EU HyperK meeting

CERN, 18th June 2014 A magnetized muon range detector for TITUS



Aside: Momentum for the penetrating sample
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Sketch analysis of a magnetised MRD

only one scintillator plane — upper bound on muon energy

two scintillator planes hit  — energy measurement from range
y measurement of charge If yg >y,

3 — 6 scintillator planes hit — energy measurement from range
v measurement of charge

> 6 scintillator planes hit — energy measurement from range
energy measurement from curvature
0 and y measurement of charge

2nd EU HyperK meeting

CERN, 18th June 2014 A magnetized muon range detector for TITUS
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Muon path length in the iron of the MRD

3000 stopped in MRD

- penetrated MRD
2500

2000

- six 3cm Fe planes
1500 &>

1000

500

0 20 40 60 80 100 120 140 160 180 200
path length in the MRD (cm)
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TITUS MRD charge recon. efficiency vs. muon energy

Charge recon. efficiency for u in the MRD Charge recon. efficiency for u in the MRD
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TITUS MRD charge recon. efficiency vs. neutrino energy

Charge recon. efficiency for u in the MRD
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but of course E, <2 GeV is of particular interest

neutrino

Sm22'81320.1
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Such information, especially when combined with the Gd charge measurement, could
constrain previously assumed parameters in a BANFF —style fit

Parameter Correlation Matrix Prior to ND280 Constraint

[u—

% T
1 2 30
XS 3
| £
T 5 25
[l ]
= 20 -
15 =
flux- .

0 5 10 I5 20 25 30

Fit Parameters

Parameter Correlation Matrix After ND280 Constraint

5 10 15 20 25 30

ND280 does not constrain every cross-section parameter (NC, coherent, o(v.)/o(v,,)...)

In particular, we rely on external data for (v )/ o(v)

We plan to estimate the effect of a magnetised MRD on the ability of TITUS
to constrain parameters such as these, and re-calculate the sensitivity to 6.p
(e.g. via the Simple Fitter, with covariance in Erec bins)
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Summary

18% of muons escape the 22 m long, 11 m diameter TITUS tank
With a 1.5 Tesla magnetized iron muon range detector (150 cm end, 50 cm sides):

75% of muons which escape the tank are stopped
Excellent momentum resolution from range
In the oscillation region, ~81% charge reconstruction efficiency
(with independent Gd measurement, ~96%)
90 — 100% for E > 2GeV

25% of muons which escape the tank penetrate through the MRD

~15% momentum resolution from curvature (conservative estimate)
~100% charge reconstruction efficiency
Can be used to test Gd charge reconstruction

Work in progress

* Find the effect on Jp sensitivity

* Optimization of scintillator planes’ placement

* Answers to practical questions, such as PMT shielding

* The last lever: consider re-optimising the tank size and MRD size simultaneously

2nd EU HyperK meeting .
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Landau-Vavilov most probable energy loss in iron

[

density = 7.87 g cm

L K =0.307075 MeV g cm?
= (K/2)(Z/A) (2/5%) MeV ~1.13 MeV / cm (ultra-relativistic)

™ ZIA = 26 / 55.845 = 0.466

<Z/A>p ratio (~energy loss / cm) = 1.4%

0.511 MeV

/ - neglect density effect
| d2me? 322 ST S
Ap = ¢ |In +In=+75—06—4(37)
I 177
\ 0.200 all materials

Mean excitation energy
| =286.0 eV iniron
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Charge recon. efficiency for u in the MRD

Charge recon. efficiency for u in the MRD
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Range of muons In iron

CSDA range for muons

45

range (m)

iron

Kinetic Energy T (GeV)

Fiducial volume cut=1m
with LAPPDs = 0.5 m
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How should we arrange the ‘pixels’?

Z-distribution

l1-p

— 05/ Oys

This will reduce the charge reconstruction efficiency slightly

A magnetized muon range detector for TITUS
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How should we arrange the ‘pixels’?

&:> only always
> 15 pixel OK

~displaced Gaussian

l1-p

i angle of deflection

This will reduce the charge reconstruction efficiency slightly

33
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How should we arrange the ‘pixels’?

1
1
1
1
T
1
1
1 B
1 S
T g
1 S
5
B
1 S
1 S
H 5
1
1
|

rd
4

'y
/
]

~
~

1
1
U

«h only always
> Y5 pixel OK

angle of deflection

This will reduce the charge reconstruction efficiency slightly
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Charge reconstruction efficiency

We should probably consider full side coverage
I|IIII|IIII|IIII|IIII
Isbuppadinuﬁu i

Do Muons which penetrate are out of the oscillation region
Dﬁ"sm e =>» We don’t gain by thickening the sides of the MRD

3500
3000
2500
2000

1500 And economy

We should economise with a thinner end MRD

as escaping muons are still measurable given

they have ‘sufficient’ curvature before they exit
. — they y

1000

500

3

0

0 1 2 3 4 5 6 7 8 9 10
E, (GeV)
Let’s compare... ERONT SIDE
150cm
1:side 1:end
_ 50em 75cm
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With a uniform 1.5 Tesla magnetic field, we can reconstruct the charge of a high
percentage of muons

Muons from neutrinos in the oscillation energy domain (E, < 2 GeV) have low energy
and present the biggest challenge

«  The ratio curvature / multiple scattering decreases at low energy
*  Nevertheless (conservatively?) >50% can be reconstructed

With this approach muons which penetrate through the MRD can be efficiently
reconstructed with high efficiency

*  (Zero otherwise!)

=>» In fact we can ~halve the thickness of the end MRD, at a saving of ~30%
Now optimize the scintillator placement

» Vary number of planes, thickness etc

« Maximize low-energy charge reconstruction

o (Xl X% = 1.9%

» <Z/A>p ratio (~energy loss / cm) = 1.4%
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PDG 32.11. Measurement of particle momenta in a uniform magnetic field

The trajectory of a particle with momentum p (in GeV /¢) and charge ze in a constant
magnetic field is a helix, with radius of curvature R and pitch angle A. The radius of
curvature and momentum component perpendicular to B are related by

assumes no energy 05~y 3. BR) (32.49)
where B is in tesla and R is in meters.
The distribution of measurements of the curvaturd £ = 1/R Is approximately Gaussian.
The curvature error for a large number of uniformly spaced measurements on the
trajectory of a charged particle in a uniform magnetic field can be approximated by

(6k)? = (Okyes)? + (0kms)? (32.50)
where o0k = curvature error
Okres = curvature error due to finite measurement resolution
dkms = curvature error due to multiple scattering.
If many (> 10) uniformly spaced position measurements are made along a trajectory
in a uniform medium,
€ 720

L'2\ N+4"
where N = number of points measured along track

L’ = the projected length of the track onto the bending plane
€ = measurement error for each point, perpendicular to the trajectory.

0 kres —

(32.51)

If a vertex constraint is applied at the origin of the track. the coefficient under the radical
becomes 320.



For arbitrary spacing of coordinates s; measured along the projected trajectory and
with variable measurement errors €; the curvature error dk,es is calculated from:

- 4 s
Okpes)? = — : 32.52
(e w ;’3]”;232 - (VSSQ)Q | ( )
where V' are covariances defined as Vimgan = (s"'s") — (") (s") with (s"") =
w S (8™ /ei?) and w =3 ;2.
The contribution due to multiple Coulomb scattering is approximately
0.016)(GeV/c)z | L
Okins ~ ( )( /€) (32.53)

Lp3cos? A Xo

where p = momentum (GeV /c)
charge of incident particle in units of e
the total track length
X = radiation length of the scattering medium (in units of length; the X defined
elsewhere must be multiplied by density)
3 = the kinematic variable v/c.

P

™~
I

More accurate approximations for multiple scattering may be found in the section on
Passage of Particles Through Matter (Sec. 31 of this Review). The contribution to the

e . R e . A glms 2 rms ;. -
curvature error is given approximately by 0k, =~ p]ane /L<, where Splane 15 defined
there.



