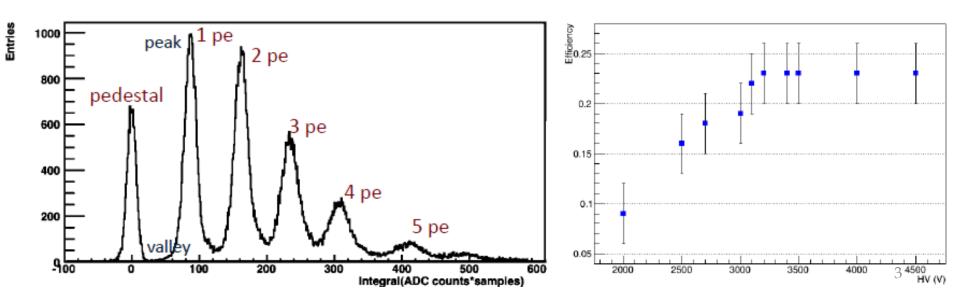

Vacuum Silicon PhotoMultiplier Tube: prototypes and engineering

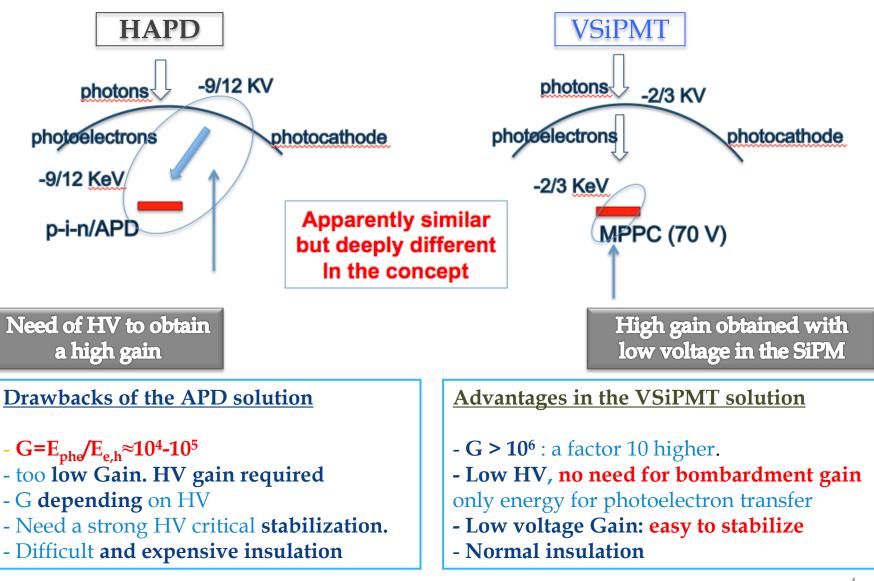
Gianfranca De Rosa Università di Napoli "Federico II" and INFN Napoli

Vacuum Silicon PhotoMultiplier Tube VSiPMT

2


ell size (μm)	50	100
tal number of cells	400	100
l Factor	61%	78%

To


Fil

VSiPMT features

- Excellent photon counting capabilities
- Photon Detection Efficiency: ≈23% @ 407nm
- High gain: $10^5 \div 10^6$, HV-stable
- Good timing performances: TTS < 0.5ns
- Low power consumption: **5mW** (amplifier stage)
- SPE resolution **17.8%**
- Peak-to-valley ratio ≈65

VSiPMT vs HAPD

VSiPMT vs PMT

	РМТ	VSiPMT	comparison
Efficiency	Photocathode x 1 st dynode	Photocathode x Fill factor MPPC (→1)	≈ comparable (slightly worse)
Gain	10 ⁶ - 10 ⁷	≈ 10 ⁶	≈ equivalent
Timing	nsec	fractions of nsec (no spread dynodes)	+ VSiPMT
Power Consumption	Divider Dissipation	No dissipation: just amp. G=10-20 (<5mW)	+VSiPMT
Stability H.V.	H.V. stabilization for stable gain	No H.V. stability (plateau)	+VSiPMT
Dark counts	≈ kHz @ 0.5pe	≈100 kHz/mm² @0.5pe	+PMT
Photon counting	difficult	excellent	+VSiPMT
Linearity	depending on gain	depending on focusing	≈+PMT
Peak-to-valley	≈ 3 (typ.)	> 60	+VSiPMT
Afterpulse(@0.5pe)	≈ 10%	Next gen. MPPC <0.3%	+VSiPMT
SPE resolution	≈ 30% (typ.)	≈ 17.8%	+VSiPMT 5

Feasibility study of a 3" VSiPMT

VSiPMT prototypes characterization provided the unequivocal proof of feasibility of the device.

New prototypes are currently under study

Constraints

- Physics applications require significantly bigger sensitive areas;
- Keep power consumption and TTS as low as possible;
- Linearity must be improved.

Engineering and design phase

- development of two VSiPMT prototypes (1 inch and 3 inches photocathode area, respectively);
- focusing system for linearity and TTS optimization;
- Silicon layers structure for efficiency maximization.

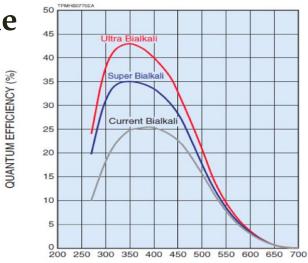
3-inch VSiPMT: Photocathode

In use: GaAsP transmission mode photocathode

Performances

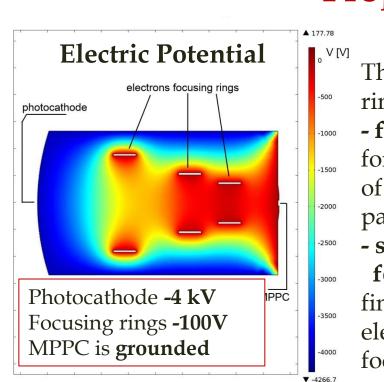
- wide band gap, covering all the visible wavelengths
- high quantum efficiency (up to ~50%)

Drawback

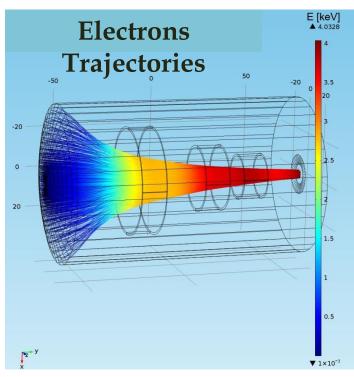

realizable only by **epitaxial growth** in flat shape \rightarrow high manufacture complexity and costs

Feasible solution: Ultra Bialkali transmission mode

photocathode


Performances

- spectral response ranging between 300 nm and 600 nm
- low noise
- realized by **evaporation**: large surfaces and curve shapes, lower costs


3-inch VSiPMT: Focusing

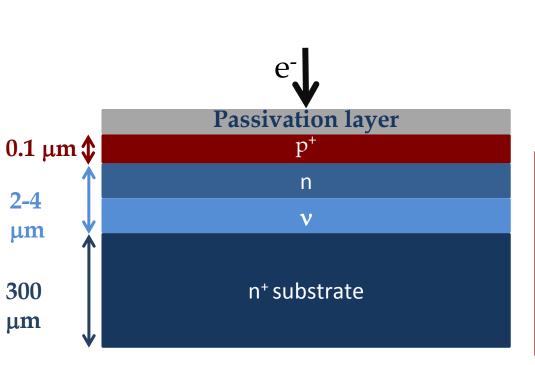
A too **strong focusing** means that not all pixels are involved \rightarrow **drastical reduction of the linearity** A too weak focusing means that a fraction of the pe misses the target \rightarrow decrease of the overall PDE



Proposed Solution

- Three focusing rings: - first focusing ring for time alignment of all electrons paths
- second and third focusing rings: fine tuning of the electron beam focusing

3-inch VSiPMT: SiPM shape


To adapt the sensitive area of the electron multiplier to the shape and to the size of the pe spot and reduce dark counts:

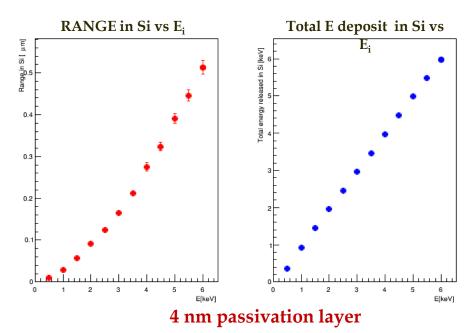
- Octagonal-shaped
- Standard square with "blind" corners

3-inch VSiPMT: SiPM structure

SiPM currently in use: blue/UV-enhanced

- depletion region close to surface
- p-on-n structure for e⁻ detection optimization

Passivation layer: ~100 -150 nm of SiO₂


- excellent transmission of light
- protection from environmental factors

reduction of the photocathode HV investigation of alternative solutions based on a thinner SiO₂ passivation layer

3-inch VSiPMT: SiPM structure

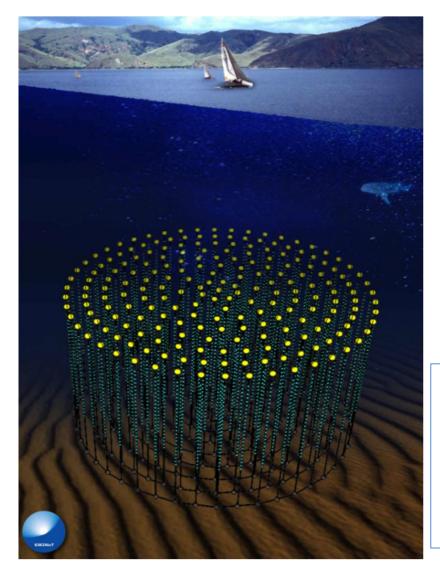
Geant4-based simulation

Geant4-MicroElec extension for low energy processes in Silicon included in *Geant4* 10.0 *Release*

4 nm SiO₂ passivation layer: the energy threshold for e⁻ drops to **2 keV** \rightarrow reduction factor of 2 with respect to the first generation prototypes

Passivation layer	Energy threshold (E _{th})	Total energy deposit in Si @ E _{th}
150 nm	4 keV	~1.8 keV
100 nm	3.5 keV	~2.2 keV
50 nm	3 keV	~2.6 keV
15 nm	2.5 keV	~2.3 keV
4 nm	>2 keV	~2 keV

Application of the VSiPMT to Water Cherenkov detectors


- Much easier-to-stabilize gain
- Highly reduced power consumption

Advantages in detector construction and maintenance

- Lower TTS (factor > 3)
- Improved Peak-to-valley ratio (factor >20)
- Excellent photon counting capabilities

Improvements in reconstruction quality

An attractive solution for Water Cherenkov experiments

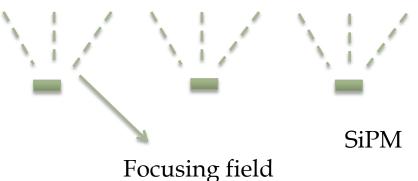
Km3NeT experiment

- Multi-site 3-D array of optical detectors
- km³ volume
- deep sea infrastructure
- Digital Optical Modules
- 31 PMTs each

...and for applications in HK

DOM structure as in Km3Net

Flat photocathode surface



Use 3" VSiPMT High granularity for background rejection and improvement of reconstruction quality

Next step:

WC detector simulation based on WCSim

- semi-DOM with 3" PMT
- semi-DOM with VSiPMT
- flat photocathode surface VSiPMT

Conclusions and Perspectives

VSiPMT is an innovative design for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a Vacuum PMT standard envelope

Unprecedented features:

- Photon counting capability;
- Low power consumption;
- Large sensitive surface;
- Excellent timing performances (low TTS);
- High stability (not depending on HV).
- Engineering and design phase: Naples INFN group studies towards a 3" VSiPMT prototypes
- Collaboration with Hamamatsu for new VSiPMT prototypes
- Simulation studies towards a VSiPMT application in WC detectors in HK

Engineering: photocathode/1

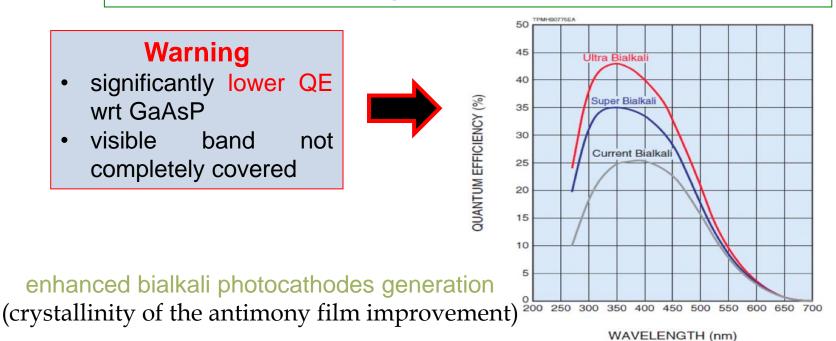
In use: GaAsP transmission mode photocathode

Excellent performances

- wide band gap, covering all the visible wavelengths
- high quantum efficiency (up to \sim 50%).

Photocathode Spectral Response (Photocathode applied voltage: 90V) 60 50 Quantum Efficiency [%] 40 30 20 10 0 200 300 400 500 600 700 800 Wavelength [nm]

Drawback


GaAsP photocathodes can be made only by epitaxial growth
→ realizable only in flat shape, with high manufacture complexity and costs.
Only for small size devices

Engineering: photocathode/2

Feasible solution: bialkali transmission mode photocathode

Pros

- typical spectral response ranging between 300 nm and 600 nm;
- low noise;
- realized by evaporation. Therefore, large surfaces and curve shapes are easily obtainable with much lower costs wrt GaAsP (about one order of magnitude).

Engineering: focusing/1

Weak focusing

Strong focusing

the photoelectron spot exceeds the size of the G-APD

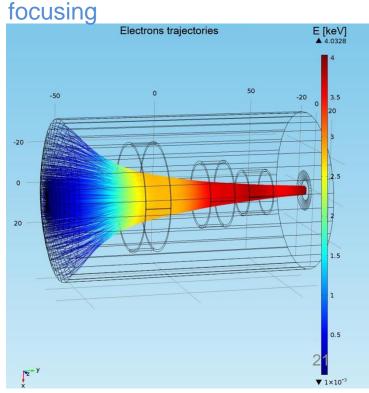
- a fraction of the ps misses the target and is systematically lost
- ➔ the overall PDE of the device decreases.

too much squeezed photoelectron beam

➔ the photoelectron spot intercepts only a fraction of the active surface of the G-APD

 \rightarrow the linearity of the device is reduced.

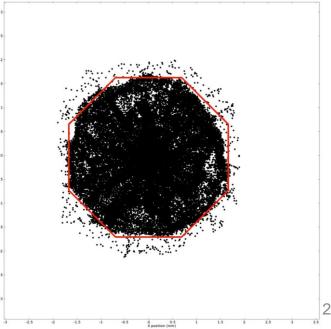
electrostatic focusing system generating a photoelectron beam with the same size of the G-APD


Additional drawback

all the G-APD pixels not involved in the electron multiplication process are still dark noise sources.

Engineering: focusing/2

Firstfocusingring:timealignmentofallpossibleelectrons paths;second and third focusing rings:fine tuning of the electron beam


Engineering: SiPM

New generation of Hamamatsu MPPCs:

- sensibly lower afterpulse rates ($\approx 10\% \Rightarrow < 0.3\%$);
- lower noise: much reduced dark counts (about one order of magnitude);
- higher gain → no amplification required (persp.), still lower power consumption;
- higher fill factor → higher dynamic range keeping a good PDE, improved linearity.

Shape optimization for dark noise reduction

- Octagonal-shaped G-APD: to adapt the sensitive area of the electron multiplier to the shape and to the size of the pe spot;
- standard square G-APD with "blind" corners: all the pixels that are not involved in the electron multiplication process are turned off.

