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Vacuum Silicon PhotoMultiplier Tube 

VSiPMT 
Photocathode 

Focusing grid 

Focusing ring 

SiPM  

Prototype ZJ5025 ZJ4991 

SiPM Area (mm2) 1×1 1×1 

Cell size (mm) 50 100 

Total number of cells 400 100 

Fill Factor 61% 78% 

• 7x7 mm2 Borosilicate glass 
entrance window 

• 3 mm Ø GaAsP photocathode  
• p+nnn+ configuration 
• special non-windowed 

MPPC series 

Two prototypes by 
Hamamatsu Photonics 
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VSiPMT features 

• Excellent photon counting capabilities 
• Photon Detection Efficiency: ≈23% @ 407nm 
• High gain: 105 ÷ 106, HV-stable 

• Good timing performances: TTS < 0.5ns 
• Low power consumption: 5mW (amplifier stage) 
• SPE resolution 17.8% 
• Peak-to-valley ratio ≈65 
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VSiPMT vs HAPD 
HAPD VSiPMT 

Drawbacks of the APD solution 
 
- G=Ephe/Ee,h≈10

4-105  
- too low Gain. HV gain required 
- G depending on HV 
- Need a strong HV critical stabilization. 
- Difficult and expensive insulation 

Advantages in the VSiPMT solution 
 
- G > 106 : a factor 10 higher.  
- Low HV, no need for bombardment gain 
only energy for photoelectron transfer 
- Low voltage Gain: easy to stabilize 
- Normal insulation 
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VSiPMT vs PMT 
PMT VSiPMT comparison 

Efficiency Photocathode x 

1st dynode 

Photocathode x 

Fill factor MPPC (1) 

≈ comparable 
(slightly worse) 

Gain 106 - 107 ≈ 106 ≈ equivalent 

Timing nsec fractions of nsec 

(no spread dynodes) 

+ VSiPMT 

Power 

Consumption 

Divider Dissipation No dissipation: just 

amp. G=10-20 (<5mW) 

+VSiPMT 

Stability H.V. H.V. stabilization for 

stable gain 

No H.V. stability 

(plateau) 

+VSiPMT 

Dark counts ≈ kHz @ 0.5pe ≈100 kHz/mm2 @0.5pe +PMT 

Photon counting difficult excellent +VSiPMT 

Linearity depending on gain depending on focusing ≈+PMT 

Peak-to-valley ≈ 3 (typ.) > 60 +VSiPMT 

Afterpulse(@0.5pe) ≈ 10% Next gen. MPPC <0.3% +VSiPMT 

SPE resolution ≈ 30% (typ.) ≈ 17.8% +VSiPMT 
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Feasibility study of a 3’’ VSiPMT 

VSiPMT prototypes characterization provided the unequivocal proof 
of feasibility of the device. 

New prototypes are currently under study 
 

Constraints 
• Physics applications require significantly bigger sensitive 

areas; 
• Keep power consumption and TTS as low as possible; 
• Linearity must be improved. 
 
Engineering and design phase 
• development of two VSiPMT prototypes (1 inch and 3 inches 

photocathode area, respectively); 
• focusing system for linearity and TTS optimization; 
• Silicon layers structure for efficiency maximization.  
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3-inch VSiPMT: Photocathode 

Performances 
• wide band gap, covering all the 

visible wavelengths 
• high quantum efficiency (up to 
∼50%) 

In use: GaAsP transmission mode photocathode 

Drawback 
realizable only by epitaxial growth in 
flat shape → high manufacture 
complexity and costs 

Performances 
• spectral response ranging between 300 

nm and 600 nm 
• low noise 
• realized by evaporation: large surfaces 

and curve shapes, lower costs 

Feasible solution: Ultra Bialkali transmission mode 
photocathode 
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3-inch VSiPMT: Focusing 

Photocathode -4 kV 
Focusing rings -100V 
MPPC is grounded 

A too strong focusing means that 
not all pixels are involved → 
drastical reduction of the linearity 

A too weak focusing means that a 
fraction of the pe misses the target → 
decrease of the overall PDE 

Proposed Solution 

Three focusing 
rings: 
- first focusing ring 
for time alignment 
of all electrons 
paths 
- second and third  
  focusing rings: 
fine tuning of the 
electron beam 
focusing 

Electric Potential Electrons 
Trajectories 
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3-inch VSiPMT: SiPM shape 

To adapt the sensitive area of the electron multiplier to the shape and 
to the size of the pe spot and reduce dark counts: 
• Octagonal-shaped 
• Standard square with “blind” corners 
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3-inch VSiPMT: SiPM structure 

SiPM currently in use: blue/UV-enhanced 
• depletion region close to surface 
• p-on-n structure for e- detection optimization 

reduction of the photocathode 
HV 

 
investigation of alternative 

solutions based on a thinner 
SiO2 passivation layer 

Passivation layer:  ̴100 -150 nm of 
SiO2 
• excellent transmission of light 

• protection from environmental 
factors 

 

 

e- 

2-4 
mm 

n+ substrate 

n 

n 

Passivation layer 
p+ 0.1 mm 

300 
mm 

10 



3-inch VSiPMT: SiPM structure 

Geant4-based simulation 

4 nm passivation layer 

RANGE in Si vs Ei Total E deposit  in Si vs 
Ei 

Geant4-MicroElec  extension for low 
energy processes in Silicon included in 

Geant4 10.0 Release  

4 nm SiO2 passivation layer:  
the energy threshold for e- 
drops to 2 keV  reduction 
factor of 2 with respect to the 
first generation prototypes 

Passivation 
layer 

Energy threshold 
(Eth)  

Total energy 
deposit in Si 

@ Eth 

150 nm 4 keV ̴1.8 keV 

100 nm 3.5 keV  ̴2.2 keV 

50 nm 3 keV ̴2.6 keV 

15 nm 2.5 keV ̴2.3 keV 

4 nm >2 keV ̴2 keV 11 



Application of the VSiPMT to  
Water Cherenkov detectors 

• Much easier-to-stabilize 
gain 

• Highly reduced power 
consumption 

Advantages in detector 
construction and 

maintenance 

• Lower TTS (factor > 3) 
• Improved Peak-to-valley ratio  
      (factor >20) 
• Excellent photon counting 

capabilities 

Improvements in 
reconstruction quality 
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An attractive solution for  
Water Cherenkov experiments 

- Multi-site 3-D array of 

optical detectors 

- km3 volume 

- deep sea infrastructure 

- Digital Optical Modules 

- 31 PMTs each 

Km3NeT 
experiment 
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…and for applications in HK 

DOM structure as in Km3Net 

Use 3’’ VSiPMT 
High granularity for 
background rejection and 
improvement of 
reconstruction quality  

Next step: 
WC detector simulation based on WCSim  
- semi-DOM with 3’’ PMT 
- semi-DOM with VSiPMT 
- flat photocathode surface VSiPMT 14 

Flat  photocathode surface 

SiPM 
Focusing field 



Conclusions and Perspectives 

VSiPMT is an innovative design for a modern hybrid photodetector based on 
the combination of a Silicon PhotoMultiplier (SiPM) with a Vacuum PMT 
standard envelope 

Unprecedented features: 
• Photon counting capability; 
• Low power consumption; 
• Large sensitive surface; 
• Excellent timing performances (low TTS); 
• High stability (not depending on HV). 

 Engineering and design phase: Naples INFN group studies 
towards a 3’’ VSiPMT prototypes 

 Collaboration with Hamamatsu for new VSiPMT prototypes 
 Simulation studies towards a VSiPMT application in WC 

detectors in HK 
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Engineering: photocathode/1 

Excellent performances 
• wide band gap, covering 

all the visible wavelengths 

• high quantum efficiency 

(up to ∼ 50%). 

In use: GaAsP 

transmission mode 

photocathode 

Drawback 
GaAsP photocathodes can be made only by epitaxial growth 

  realizable only in flat shape, with high manufacture complexity and costs. 

Only for small size devices 
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Engineering: photocathode/2 

Pros 
• typical spectral response ranging between 300 nm and 600 nm; 

• low noise; 

• realized by evaporation. Therefore, large surfaces and curve 

shapes are easily obtainable with much lower costs wrt GaAsP 

(about one order of magnitude). 

Feasible solution: bialkali transmission mode photocathode 

Warning 
• significantly lower QE 

wrt GaAsP 

• visible band not 

completely covered 

enhanced bialkali photocathodes generation 
(crystallinity of the antimony film improvement) 
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Engineering: focusing/1 

the photoelectron spot exceeds 

the size of the G-APD  

 a fraction of the ps misses the 

target and is systematically 

lost 

 the overall PDE of the device 

decreases. 

Weak focusing 

too much squeezed photoelectron 

beam 

the photoelectron spot intercepts 

only a fraction of the active surface 

of the G-APD 

the linearity of the device is 

reduced. 

Strong focusing 

Additional drawback 

all the G-APD pixels not involved in 

the electron multiplication process 

are still dark noise sources. 

OPTIMAL SOLUTION 

electrostatic focusing system 

generating a photoelectron beam 

with the same size of the G-APD 
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Engineering: focusing/2 

Photocathode: -4 kV; 

Focusing rings: -100V; 

MPPC is grounded 

First focusing ring: time 

alignment of all possible 

electrons paths; 

Second and third focusing rings: 

fine tuning of the electron beam 

focusing 
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Engineering: SiPM 

• Octagonal-shaped G-APD: to adapt the 

sensitive area of the electron multiplier to 

the shape and to the size of the pe spot; 

• standard square G-APD with “blind” 

corners: all the pixels that are not 

involved in the electron multiplication 

process are turned off. 

New generation of Hamamatsu MPPCs: 

• sensibly lower afterpulse rates (≈10%  < 0.3%); 

• lower noise: much reduced dark counts (about one 

order of magnitude); 

• higher gain  no amplification required (persp.), still 

lower power consumption; 

• higher fill factor  higher dynamic range keeping a 

good PDE, improved linearity. 

Shape optimization for dark noise reduction 
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