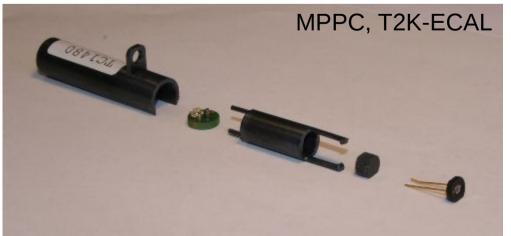


Photosensor plans for the UK for Hyper-Kamiokande


P. Beltrame, G. Cowan, F. Di Lodovico, M. Needham
18 June 2014
Second EU Hyper-Kamiokande Open Meeting
CERN, Geneva

Status

- •This is just a summary of the plans for working on the photonsensors for Hyper-K in the UK
- •The work will be provided mainly at the University of Edinburgh, and at QMUL
 - Benefitting from the expertise from LHCb, T2K
 - Benefitting from collaboration with the ANNIE experiment.

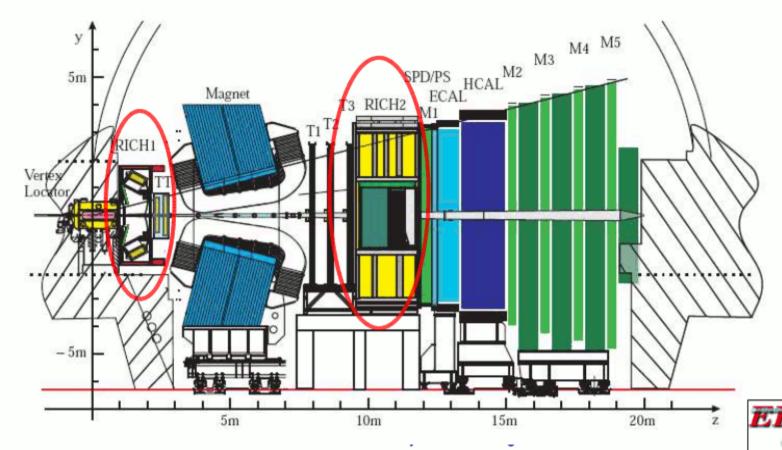
Edinburgh Experience

Group has track record in photodetector development from Babar/LHCb

For LHCb:

- Edinburgh group responsible for HPD testing during construction (600 HPDs tested during construction phase).
- Now responsible for maintaining and monitoring performance of HPDs

For LHCb upgrade:


- Testing performance of multianod photomultipliers MaPMTs:
 - general performance and behaviour in magnetic fields

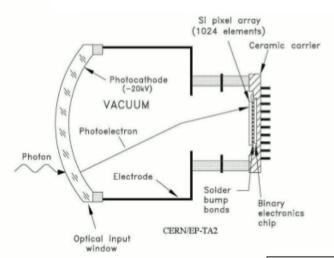
Edinburgh will become photodetector test centre for the LHCb upgrade (~ 3000 MaPMTs to be tested in total)

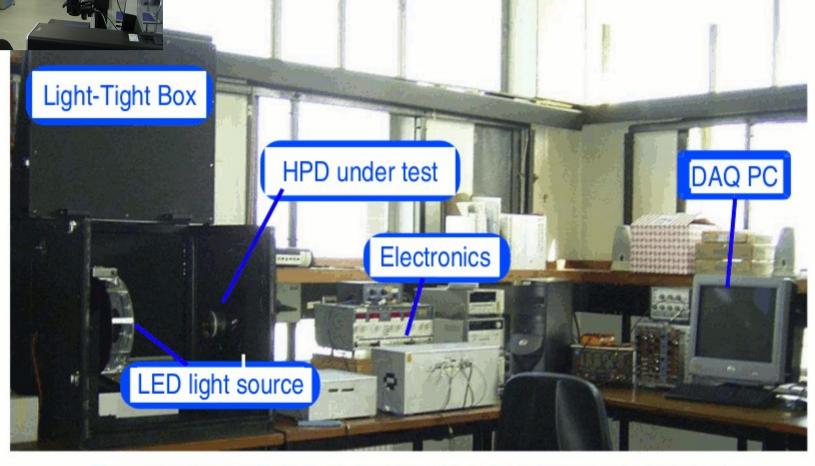
Test setup in recently equiped Advanced Detector Development Centre

The LHCb Experiment

- ★ One of the four experiments at the LHC
- ★ p-p collisions at 14TeV centre-of-mass energy
- ★ Single-arm spectrometer
- ★ Aims to study Charge-Parity Violation (夕) in B-mesons

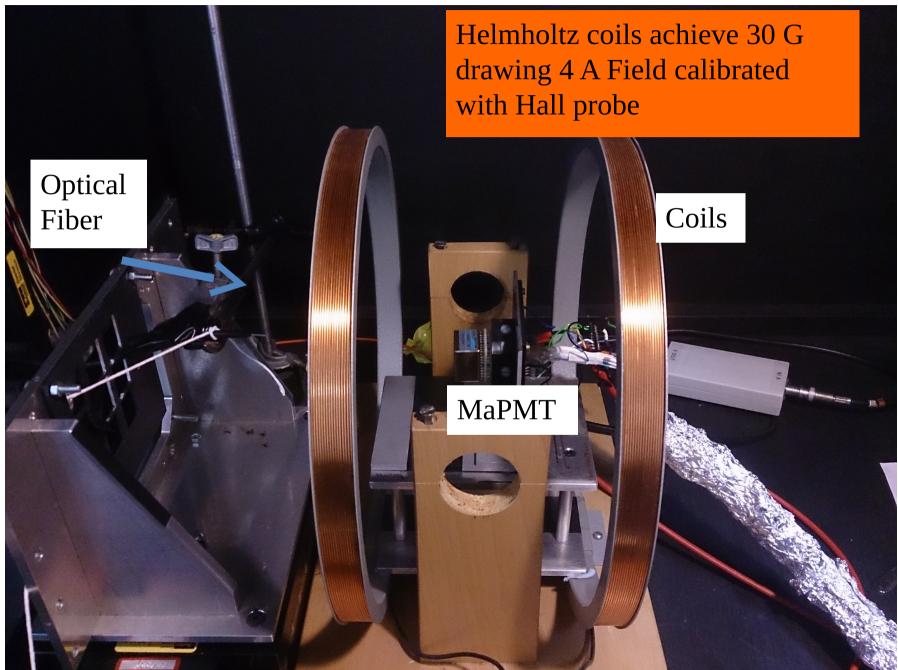
J.McCarron, University of Edinburgh


Photonis HPDs used in LHCb RICH detectors

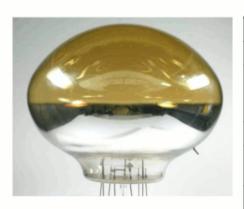

- Quartz window with multi-alkali photocathode
- Cherenkov light hitting photocathode releases photoelectrons.
- Accelerated by high voltages (~20kV) and focussed.
- Photoelectrons hit reverse biased silicon diode
- ~5000 e⁻ hole pairs formed
- Anode separated into 8192 pixels
- Position of hits digitised by bump-bonded sensor chip

HPD Testing in Scotland:

Test station at Edinburgh, showing dark box and electronics



Test setup in magnetic field


Short Term Timescale

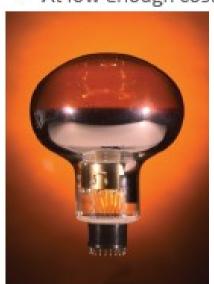
•Bough 8" HPD (~3month lead time) by Matt Needham, after discussion with Nishimura/Nakayama

•Will work on the preamp and on property tests in

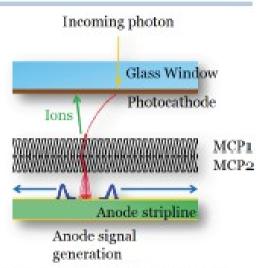
Edinburgh.

Photo-sensor HPD R12112 (A-type): General Specification

Parameter		Description/Value	Unit
Spectral Response		300 ~ 650	nm
Typical Maximum Photocathode Sensitivity (Quantum Efficiency)@380nm		20	%
Photocathode Material		Bialkali	-
Minimum Effective Photocathode Area		180	mm dia.
Window Material		Borosilicate glass	-
Electron Multiplication Method		Semiconductor Electron Bombardment Multiplying System	-
Target Semiconductor		5mmφ Backside Illumination Avalanche Diode	-
Absolute Maximum Ratings	Photocathode – Target Semiconductor	10	kV
	Target Bias Voltage	350	V

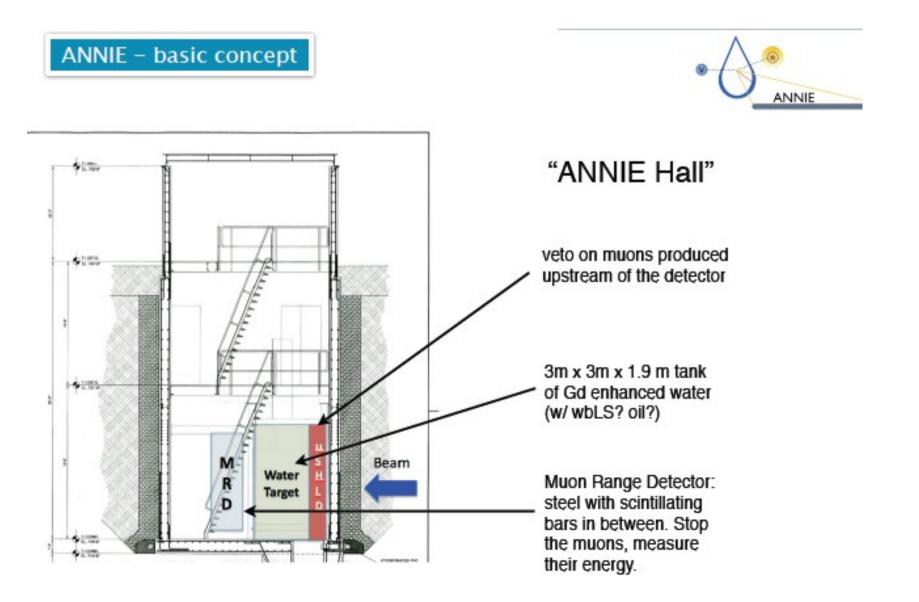

Intro on LAPPDs Usage

- Potential candidate especially for near detector.
- •LAPPDs (Large Area Picosecond Photo-Detector) not commercially available yet. Expected timescale <3y
- •Currently:
 - Investigate physics improvements with new technology (see Matthew's talk)
 - Participate in ANNIE (see next slides). Technical report for the Fermilab PAC expected in the Fall.
 - Contribute to LAPPD reconstruction and R&D (R.Sacco, new QMUL electronic engineer*)
 - QMUL experience in MCCPs for T2K
- •Longer term future:
 - Tests in the UK
 - Assess feasibility for near detector
 - *Job advert (just advertised): http://www.jobs.qmul.ac.uk/4872


LAPPD

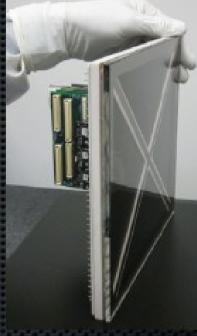
LAPPD: Approach

- Base on Existing Technology: Micro Channel Plate (MCP) photo-multiplier
 - Picosecond-level time resolution
 - Micron-level spatial resolution
 - Excellent photon-counting capabilities
 - Expensive
- New Aspect: Fully Integrated Approach
 - Exploit advances in material science and electronics to produce large-area MCP-PMTs:
 - Preserve time and space resolutions of conventional micro-channel plate detectors
 - At low enough cost per unit area

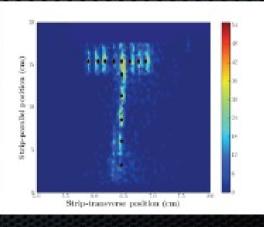


Annie

- Both for R&D (LAPPDs studies) and for Physics (neutron yield from ν interactions \rightarrow background for proton decay)
- SciBooNE hall in the FNAL booster beam.

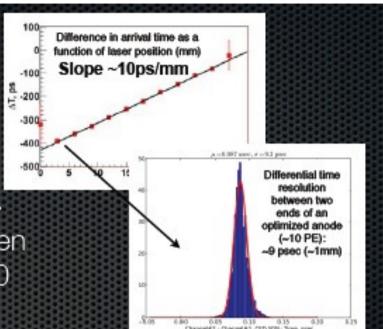

LAPPDs

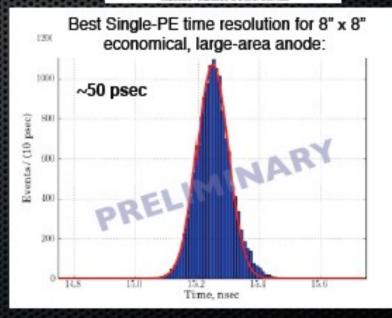
LAPPD Status


- Testing end-to-end detector system:
 - complete "demountable" glassbody 8" MCP-detector.
 - full readout and front-end electronics, 80 cm anode line.
- Producing and testing separate 8" x 8" tile, bialkalai photocathodes with QE > 20%
- There is also 8" Sealed-Tube processing tank at Berkeley SSL built and being tested.
- Psec4 chip benchmarked at:
 - 1.6 GHz analog bandwidth,17 Gsamples/second, ~ 1mV noise
- Psec electronics system is capable of shape-fitting the LAPPD pulses for time, position, and charge at the frontend.

ANL "demountable" detector system glass body LAPPD Reconstruct of a "T" below

Berkeley SSL detector systemceramic body LAPPD





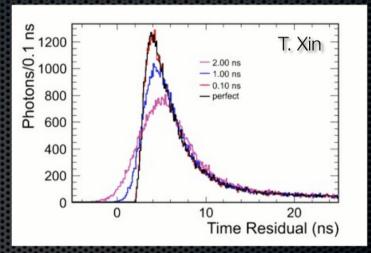
LAPPDs

LAPPD Status

- Testing 8" x 8" (Argonne-made) MCPs:
 - Pulse height peaked at 10⁷ gain.
 - Differential time resolution between two ends of delay-line anode <10 psec.
 - 2 mm spatial resolution parallel to the strip direction, <1 mm in transverse.
 - Time resolution of ~50 psec using economical anode design.
- Commercialization progress: \$3 M awarded in SBIR funding to US company to commercially develop LAPPDs.

Summary

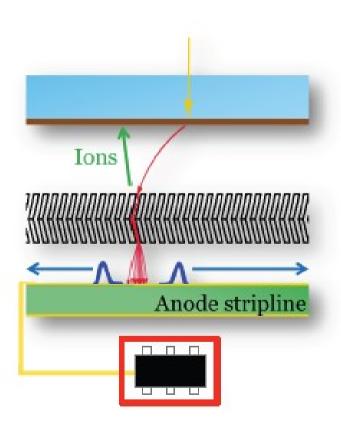
•Effort just started in the UK to join the global effort to develop the best photosensors for the Hyper-K experiment.


Intro on LAPPDs Usage

 Exploiting better timing/spatial resolution and coverage in WC detectors:

Using LAPPDs for Neutrinos

- The application of this new technology could enhance background rejection and vertex resolution by improving spatial and timing information.
- Our studies show that beyond 100 psec there are no further gains when using time residual distributions in a 200kton detector.
- We have also found that for a given detector size, the uncertainties in the position of the leading edge become smaller if better photodetector coverage is considered.


M. Sanchez (ISU/ANL), M. Wetstein (U Chicago/ANL),I. Anghel (ISU), G. Davies (ISU), T. Xin (ISU)

LAPPD

LAPPD Deconstructed

1. Photo-Cathode (PC)

- Conversion of photons to electrons
- Engineer III-V materials to develop robust high QE photo-cathodes

2. Micro-Channel Plates

 Amplification of signal: two plates with tiny pores, held at high potential difference. Use Atomic Layer Deposition for emissive material on inert substrates to create avalanche

Transmission line, high speed readout

 Anodes is a 50Ω scalable strip line silk-screen printing on glass ground plane (Borofloat 33)

Hermetic Packaging

 Maintain vacuum and provide support. No internal connections; no penetrations

Flectronics

 Readout at both ends with fast custom CMOS SCA chip with 18 GHz waveform digitization; optimized design yields pico-second timing resolution