Physics Highlights: many new results!

IBL Insertion and ID cooling tests

Milestone Week 3: cosmics in ATLAS!
Recent Physics Highlights
Finalizing Run 1 data analysis (7 and 8 TeV)

- Measurement of the underlying event in jet events from 7 TeV proton-proton collisions with the ATLAS detector
- Jet energy measurement and its systematic uncertainty in proton-proton collisions at \(\sqrt{s} = 7 \) TeV with the ATLAS detector
- Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 20.3 fb\(^{-1}\) of \(\sqrt{s} = 8 \) TeV proton-proton collision data
- Light-quark and gluon jet discrimination in pp collisions at \(\sqrt{s} = 7 \) TeV with the ATLAS detector
- Evidence of electroweak production of WWjj in pp collisions at \(\sqrt{s} = 8 \) TeV with the ATLAS detector
- Search for supersymmetry in events with four or more leptons in \(\sqrt{s} = 8 \) TeV pp collisions with the ATLAS detector
- Search for microscopic black holes and string balls in final states with leptons and jets with the ATLAS detector at \(\sqrt{s} = 8 \) TeV
- Search for High-Mass Dilepton Resonances in pp Collisions at \(\sqrt{s} = 8 \) TeV with the ATLAS Detector
- Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead-lead collisions at \(s_{NN} = 2.76 \) TeV with the ATLAS detector
- The monitoring and data quality assessment of the ATLAS liquid argon calorimeter
- Operation and Performance of the ATLAS Semiconductor Tracker
- Measurement of \(\chi_{c1} \) and \(\chi_{c2} \) production with \(\sqrt{s} = 7 \) TeV pp collisions at ATLAS
- Observation of Boosted Z\(\rightarrow \)bb Production in Proton-Proton Collisions at \(\sqrt{s} = 8 \) TeV and Measurement of the Production Cross-Section
- Muon Reconstruction Efficiency and Momentum Resolution of the ATLAS Experiment in Proton-Proton Collisions at \(\sqrt{s} = 7 \) TeV in 2010
- Search for supersymmetry at \(\sqrt{s} = 8 \) TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector
- Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data
- Measurement of the low mass Drell-Yan differential cross section at \(\sqrt{s} = 7 \) TeV using the ATLAS detector
- Measurement of the parity violating asymmetry parameter \(\alpha_b \) and the helicity amplitudes for the decay \(AB \rightarrow J/\psi A0 \) with the ATLAS detector
- Search for dark Matter in events with single \(Z \) and missing transverse Energy using pp collisions at \(\sqrt{s} = 8 \) TeV with the ATLAS detector
- Search for top quark decays \(t \rightarrow qH \) with \(H \rightarrow \gamma\gamma \) using the ATLAS detector
- Searches for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \(\sqrt{s} = 8 \) TeV with the ATLAS detector
- Measurement of the 4l Cross Section at the Z Resonance and Determination of the Branching Fraction of \(Z \rightarrow 4l \) in pp Collisions at \(\sqrt{s} = 7 \) and 8 TeV with ATLAS
- Search for direct stop pair production in events with a \(Z \) boson, \(b \)-jets and missing transverse energy with the ATLAS detector using 21 fb\(^{-1}\) from proton-proton collision at \(\sqrt{s} = 8 \) TeV
- Search for direct top squark pair production in final states with two leptons in \(\sqrt{s} = 8 \) TeV pp collisions with the ATLAS detector
- Measurement of event-plane correlations in \(s_{NN} = 2.76 \) TeV lead-lead collisions with the ATLAS detector

Since the last LHCC meeting:
- 25 new papers
- 27 CONF notes

Paper shown in this talk
- Paper in back-up
Heavy Ions

- **10 new results** released since last LHCC meeting!
 - Cover a variety of topics aiming to study quark gluon plasma using soft and hard probes (in p-Pb and Pb-Pb)
 - Presented at QuarkMatter 2014 Conference

Charged hadron production in p+Pb collisions at √s_{NN}=-5.02-TeV measured at high transverse momentum

Measurement of the production of neighbouring jets in lead-lead collisions at √s_{NN} = 2.76 TeV

Collective flow with higher-order cumulants in lead-lead collisions at √s_{NN} = 2.76 TeV

Centrality, rapidity and pT dependence of isolated prompt photon production in Pb-Pb collisions at √s_{NN} = 2.76 TeV

Measurements of the nuclear modification factor for jets in Pb+Pb collisions at sqrt{NN}=2.76 TeV

Centrality and rapidity dependence of inclusive jet production in √s_{NN}=-5.02-TeV proton–lead collisions

Measurement of W boson production and lepton charge asymmetry in Pb+Pb collisions at √s_{NN} = 2.76 TeV

Elucidating the event-shape fluctuations via flow correlations and jet tomography studies in 2.76 TeV Pb+Pb collisions

Measurement of the long-range pseudorapidity correlations and associated Fourier harmonics in √s_{NN}=5.02 TeV proton-lead collisions

Measurement of the Z-boson production in pPb collisions at √s_{NN}=5.02 TeV
HI highlights: Hard Probes and jets

Jet production in p-p and Pb-Pb:

- Measure absolute jet suppression: R_{AA} (=nuclear modification factor) vs rapidity and in ranges of centrality
 - 0-10% Centr: $R_{AA} = 0.47$ (0.56) for $p_T = 55$ (355) GeV consistent with central-to-peripheral ratio

EWK Boson measurements \(\rightarrow\) additional way to study partonic energy loss in HI collisions (standard candles).

\[E.g.: W (\rightarrow e, \mu) \]
Evidence for Electroweak Production of $W^\pm W^\pm jj$

- Key process to probe the nature of EWK symmetry breaking
- Use 8 TeV full dataset in $e^\pm e^\pm$, $e^\pm \mu^\pm$, and $\mu^\pm \mu^\pm$ final state (+2jets)

‘Inclusive’ and ‘VBS’ fiducial regions

combined significance: $4.5 (3.6) \sigma$ in the inclusive (VBS) region

Fiducial cross section in VBS region:

$\sigma^{\text{fid}} = 1.3 \pm 0.4(\text{stat}) \pm 0.2(\text{syst})$ fb

SM: 0.95 ± 0.06 fb

Set also limits on anomalous quartic gauge boson couplings ($a4$, $a5$)
Top production

- Single top t-channel inclusive and fiducial cross section

Translate fiducial σ to total σ

Also:

arXiv:1403.6293

Search for FCNC top \rightarrow Hq, H\rightarrow $\gamma\gamma$

BR < 0.79% and limits on tqH ($q=u,c$) coupling
Higgs highlights

- Shortly after last LHCC meeting: update on higgs couplings
 - Inclusion of fermion results (H to $\tau\tau$ and VH, $H \rightarrow bb$)

ATLAS-CONF-2014-009

ATLAS Prelim.

<table>
<thead>
<tr>
<th>Channel</th>
<th>σ (stat.)</th>
<th>σ (sys inc.)</th>
<th>σ (theory)</th>
<th>Total uncertainty</th>
<th>μ (1σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.57$^{+0.33}_{-0.28}$</td>
</tr>
<tr>
<td>$H \rightarrow ZZ^* \rightarrow 4l$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.44$^{+0.40}_{-0.35}$</td>
</tr>
<tr>
<td>$H \rightarrow WW^* \rightarrow l\nu l\nu$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00$^{+0.32}_{-0.29}$</td>
</tr>
<tr>
<td>Combined $H \rightarrow \gamma\gamma, ZZ^, WW^$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.35$^{+0.21}_{-0.20}$</td>
</tr>
<tr>
<td>$W, Z \rightarrow b\bar{b}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2$^{+0.7}_{-0.6}$</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau$ (8 TeV data only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4$^{+0.5}_{-0.4}$</td>
</tr>
<tr>
<td>Combined $H \rightarrow b\bar{b}, \tau\tau$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.09$^{+0.36}_{-0.32}$</td>
</tr>
</tbody>
</table>

Total: $\mu = 1.30 \pm 0.12 \text{ (stat)} \pm 0.14 \text{ (sys).}$

Coupling fits assuming only SM

- $\kappa_V = 1.15 \pm 0.08$
- $\kappa_F = 0.99 \pm 0.17$

Illustration on how channels contribute

Monica D’Onofrio, 118th Open LHCC Session 4/06/2014
ttbar+Higgs

- Direct access to top-Higgs Yukawa coupling
- Consider $H \rightarrow b\bar{b}$: single and dilepton channels, categorized in N jets, N b-jets.
- Use Neural Network based on several discriminating variables

E.g.: single lepton $6j, 4b$

Constrain background in suitable Control Regions → help reducing systematic uncertainties

Signal strength assuming $m_H = 125$ GeV

Centrality=$\text{Sum } pT / \text{Sum } E \text{ (all jets and lepton)}$
Since then: improvements in energy-scale calibrations for e, γ and μ

Ele/photons in 2012 data
6.6M Z to ee used to derive in-situ energy scales for e and γ
0.3M J/ψ to ee and 0.2M Z to $l\ell\gamma$ for cross checks

Muons in 2012 data:
9M Z to $\mu\mu$, 6M J/ψ used to set the muon p scale and resolution.
5M Y to $\mu\mu$ used to verify results and systematics

Total uncertainty on e energy scale: 0.03%-0.3% for $E_{eT} \sim 40$ GeV
Total uncertainty on γ energy scale: 0.2%-0.6% for $E_{\gamma T} \sim 60$ GeV
Total uncertainty on μ: from 0.04% for $\eta \sim 0$ to 0.2% for $|\eta| > 2.0$
Improved measurement of Higgs boson mass

Last Mass measurement (July 2013)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Mass value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>126.8 ± 0.2 (stat) ± 0.7 (sys) GeV</td>
</tr>
<tr>
<td>$H \rightarrow 4l$</td>
<td>$124.3^{+0.6}{-0.5}$ (stat) $^{+0.5}{-0.3}$ (sys) GeV</td>
</tr>
<tr>
<td>Combined</td>
<td>125.5 ± 0.2 (stat) $^{+0.5}_{-0.6}$ (sys) GeV</td>
</tr>
</tbody>
</table>

Measurement limited by systematic uncertainties on e/γ energy scale

Mass measurement in $H \rightarrow \gamma\gamma$

- Unbinned likelihood fit with m_H as parameter of interest
- **10 mutually orthogonal categories** (converted/ unconverted γ, η of γ) with different S/B, optimized to minimize the expected uncertainty on the mass measurement
- Reduction by 10% of expected signal resolution
- Reduce systematics on $m_{\gamma\gamma}$ from **0.7 GeV** (Summer 2013) to **0.24 GeV** (now!)
Improved measurement of Higgs boson mass

Last Mass measurement (July 2013)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Mass value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma \gamma$</td>
<td>126.8 ± 0.2 (stat) ± 0.7 (sys) GeV</td>
</tr>
<tr>
<td>$H \rightarrow 4l$</td>
<td>$124.3^{+0.6}{-0.5}$ (stat) $^{+0.5}{-0.3}$ (sys) GeV</td>
</tr>
<tr>
<td>Combined</td>
<td>125.5 ± 0.2 (stat) $^{+0.5}_{-0.6}$ (sys) GeV</td>
</tr>
</tbody>
</table>

Measurement limited by systematic uncertainties on e/γ energy scale

Mass measurement in $H\rightarrow 4l$

Factor of 2 to 10 reduction of uncertainties related to energy calibration

Improvements in analysis techniques

- Use new multivariate discriminant
- 2D fit (m_{4l},BDT) with 4 categories ($4\mu,4e,2\mu 2e,2e2\mu$)

Increase S/B

Reduction of the statistical uncertainties
Improved measurement of Higgs boson mass

Last Mass measurement (July 2013)

Measurement limited by systematic uncertainties on e/γ energy scale

<table>
<thead>
<tr>
<th>Channel</th>
<th>Mass value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>126.8 ± 0.2 (stat) ± 0.7 (sys) GeV</td>
</tr>
<tr>
<td>$H \rightarrow 4\ell$</td>
<td>124.3 ± 0.6 (stat) ± 0.5 (sys) GeV</td>
</tr>
<tr>
<td>Combined</td>
<td>125.5 ± 0.2 (stat) ± 0.6 (sys) GeV</td>
</tr>
</tbody>
</table>

Combination

Use profile likelihood ratio defined in terms of m_H and treating $\mu_{\gamma\gamma}$ and $\mu_{4\ell}$ as independent nuisance parameters

Considerable reduction of systematic uncertainties on individual measurements

$\Delta m_H = 1.47 \pm 0.67$ (stat) ± 0.28 (sys) GeV $= 1.47 \pm 0.72$ GeV

Compatibility: 2.0σ (was 2.5σ) corresponding to a probability of 4.8%

Shown at LHCP this week for first time; paper to be submitted shortly

Monica D’Onofrio, 118th Open LHCC Session

4/06/2014
Beyond SM Higgs searches

- Search for resonant ($X \rightarrow hh$) and non-resonant Higgs pair production in $\gamma\gamma bb$
 - X could be heavy Higgs in 2HD Models
 - Non resonant: SM hh production NLO xsect = 9.22 fb (includes interference between trilinear Higgs couplings and box diagrams)

 95% CL upper limit on $\sigma x BR$ of non-resonant production:
 Obs: 2.2pb
 (Exp: 1.0$^{+0.6}_{-0.3}$pb)

 Limit for narrow resonance: 0.8 - 3.5 pb as function of its mass

- Search in low/high $\gamma\gamma$ mass
 - Explore region between 65 and 600 GeV
 - SM Higgs production treated as background
 - Model-independent limit at the 95% CL on the production cross-section x BR($\rightarrow \gamma\gamma$) in a fiducial volume
Several new results on searches for SUSY strong production: gluinos, squarks including top squarks

arXiv:1404.2500

2 same sign leptons (e/mu) + (b-) jets (/ 3-leptons + (b-)jets).

Background estimate mostly data-driven

Several interpretations → gluino pair production

0 leptons, 2-6 jets + Missing E_T → several SR targeting many strong production scenarios.

Example: squark pair production

Background estimate from control regions.

arXiv:1405.7875
SUSY searches: top squarks

2-lepton (e/μ) + b-jet: targets different mass hierarchies. Uses M_{T2} variable to suppress the background.

OR decay via stau: ATLAS-CONF-2014-014

0 leptons + 4/5/6 jets + Missing E_T: sensitive to various scenarios.

Shown TODAY for first time; paper to be submitted shortly.
SUSY Searches: Electroweak production

4-lepton (e, μ, τ) - many interpretations (R-parity violating and EWK scenarios).

Example of SR with 1τ

2-lepton (e, μ) - many interpretations. (a) Exclusion of chargino pair production decaying via W’s (b) combined chargino-neutralino exclusion in WZ final states
Searches in dilepton final states

- Resonant dilepton production
 - $ee, \mu\mu$

- Non resonant dilepton production

Use also the ll decay angle, $\cos\theta^*$

Lower limits on:

- Scale for Contact Interaction: $\Lambda > 26.3$ TeV
- Large Extra Dimension: $M_s > 6.1$ TeV for $n=3$ ADD
Towards Run 2
IBL insertion and Pixel status

- IBL (new inner pixel layer being added during LS1) completely inserted on Wednesday May 7!
 - Smooth operations, followed by installation of N₂ lines and flushing in IBL sealed volume

- In addition:
 - Pixel detector reconnected and cooling restarted
 - All 82 Pixel loops operated successfully

On-going:

- IBL service connections
- Further extensive cooling trials in July for IBL, Pixel and SCT systems
M-weeks

Milestone weeks:
- get all sub detectors up and running for Run-2
- 6 milestone weeks foreseen until October 2014
- Since last LHCC meeting: two more M-weeks completed

M3 (just two weeks ago):
- Huge progress on all systems!
- Could run with combined system at 100+ kHz level-1 rate using random triggers
- **Overnight Cosmic Trigger Run** TRT Fast OR + RPC + MDT (HV nominal) and CSC (~side A HV nominal)

Table:

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feb 17-Feb 23</td>
<td>Mar 31-Apr 4</td>
<td>May 19-May 23</td>
<td>Jul 7-Jul 11</td>
<td>Sep 8-Sep 12</td>
<td>Oct 13-Oct 17</td>
</tr>
<tr>
<td>PIX</td>
<td></td>
<td></td>
<td>X¹, X²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBL</td>
<td></td>
<td></td>
<td>X¹</td>
<td>X²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCT</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAR</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIL</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBTS</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1Calo</td>
<td>X¹</td>
<td></td>
<td>X², X³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSC</td>
<td>X¹</td>
<td></td>
<td>X²</td>
<td>X²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPC</td>
<td></td>
<td>X¹</td>
<td>X¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGC</td>
<td>X¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCM</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LUCID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lumi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Cosmic run Nov 24-Dec 5
A busy ATLAS Control Room
M3 Participating Components and Runs

- Include BCM, TRT, CSC, MDT, TGC and RPC (new in M3!):
 - Tested with 100+ kHz level-1 rate
 - Sector 5 A RPC providing trigger

- Also include HLT (New in M3!):
 - For the first time in ATLAS partition since Run 1!

M3 Menu:
- LVL1: latest Run 1 Physics menu
- HLT: basic L1 streamers (e.g. L1_TRT)

Cosmic Run with all the above systems participating

- Event Display and Monitoring working at Point1.
- Tier0 processing of the data streamlined
- Data Quality Web-displays produced automatically for incoming data
Cosmics through ATLAS again!

TRT Fast-OR

RPC Trigger Event
Further preparation for Run 2

Detector consolidation and repair work ongoing, e.g.

- LAr low voltage power supplies being re-installed on the detector after capacitor replacements done at the company (Wiener)
- **Tile**: replacement of LVPS and check of HV boards (235/256 drawers done)
- **RPC** leak chasing: more than half done
- **MDT/RPC**: new BME chambers installed

New functionalities in run-2:

- 1 crate of new L1Calo input processor MCMs installed & under test
- L1Topo trigger on schedule through production readiness review
- new CSC ROD commissioning to start in June, to go to 100 kHz L1 rate

Software and Analysis preparation:

- new Geant version (4.9.6) for simulation fully validated
- new reconstruction software based on "xAOD" in final validation stage (format readable by both ROOT and Athena)
- tuning of clustering for IBL layer ongoing
- major improvements to grid-related software on track (ProdSys2, Rucio)
- tutorials on new analysis model have started (and are fully booked!)

Major testing of new SW components and analysis model during the summer ("DC14")

See more detail in March LHCC talk (A. Salzburger)
Conclusions

- Many new results released in the last few months based on heavy ions and proton-proton collisions!
 - Emphasis on finalising Run-1 papers.
- Re-analysis of 2011 and 2012 data using improved energy scale calibration for e, γ and μ led to a new precision measurement of the Higgs mass
 - Improves systematic uncertainties on individual channel measurements:
 - $H\to\gamma\gamma$: from 700 MeV to 280 MeV; $H\to4\ell$: from +500/-300 MeV to 40 MeV
 - Detailed groundwork opens door to further precision measurements
- Preparations for Run-2 continue to progress well
 - IBL successfully inserted into ATLAS
 - Pixel reconnected and testing in progress, much other work across many detectors well advanced
 - Cosmic rays recorded again during the last M-week (M3), with high-level trigger and several detectors included
- Upgrade work on Phase-1 and Phase-2 ongoing, as reported yesterday by P. Allport in the upgrade session
Back-up
B-Physics highlights: charmonium

New B-physics results since March LHCC:

- Study of heavy quarkonium production → unique insight into dynamics of strong interaction.
 - prompt and non-prompt production cross-sections for the χ_{c1} and χ_{c2} charmonium states where χ_c are reconstructed through the radiative decay $\chi_c \rightarrow J/\psi(\rightarrow \mu\mu) + \gamma$

$$\frac{d\sigma}{dp_T^J}(|y^J\psi| < 0.75)$$

$$10^{10} \times |Ldt| = 4.5 \text{ fb}^{-1}$$

$BR(B^\pm \rightarrow \chi_c K^\mp) = 4.9 \pm 0.9 \text{(stat)} \pm 0.6 \text{(syst)} \times 10^{-4}$
Other SM highlights

- More and more precision measurements but also study challenging or rare final states with 7 and 8 TeV data:
 - e.g. Z boson

\[Z \rightarrow b\bar{b} \]

\[Z \rightarrow 4l (e, \mu) \]

\[\sigma (\text{fid}) = 2.02 \pm 0.33 \text{ pb} \]

Consistent with SM predictions
Search for top pair production assuming:

- one top in W_b (with $W \rightarrow j j$ or $\rightarrow l v$)
- one top in H_q, $H \rightarrow \gamma \gamma$

Limits on $t q H$ coupling assuming equal sensitivity to $q = u$ and $q = c$:

$$\sqrt{\lambda_{tcH}^2 + \lambda_{tuH}^2} < 0.17$$

arXiv:1403.6293

Monica D’Onofrio, 118th Open LHCC Session
Fitted values of most relevant nuisance parameters

95% CL upper limits on $\sigma(tt\bar{b}H)$
Details on Higgs boson mass measurement

<table>
<thead>
<tr>
<th>Systematic</th>
<th>Uncertainty on m_H (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAr syst on material before presampler (barrel)</td>
<td>70</td>
</tr>
<tr>
<td>LAr syst on material after presampler (barrel)</td>
<td>20</td>
</tr>
<tr>
<td>LAr electronics non-linearity (layer 2)</td>
<td>60</td>
</tr>
<tr>
<td>LAr electronics non-linearity (layer 1)</td>
<td>30</td>
</tr>
<tr>
<td>LAr layer calibration (barrel)</td>
<td>50</td>
</tr>
<tr>
<td>Lateral shower shape (conv)</td>
<td>50</td>
</tr>
<tr>
<td>Lateral shower shape (unconv)</td>
<td>40</td>
</tr>
<tr>
<td>Presampler energy scale (barrel)</td>
<td>20</td>
</tr>
<tr>
<td>ID material model ($</td>
<td>\eta</td>
</tr>
<tr>
<td>$H \rightarrow \gamma \gamma$ background model (unconv rest low p_T)</td>
<td>40</td>
</tr>
<tr>
<td>$Z \rightarrow ee$ calibration</td>
<td>50</td>
</tr>
<tr>
<td>Primary vertex effect on mass scale</td>
<td>20</td>
</tr>
<tr>
<td>Muon momentum scale</td>
<td>10</td>
</tr>
<tr>
<td>Remaining systematic uncertainties</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>180</td>
</tr>
</tbody>
</table>
Details on Higgs mass measurement

ATLAS Preliminary

\[\int L dt = 4.5 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV} \]
\[\int L dt = 20.3 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV} \]

\[-2 \ln \Lambda \]

\[m_H [\text{GeV}] \]

Monica D’Onofrio, 118th Open LHCC Session

4/06/2014
Details on Higgs boson mass measurement

- Difference, Δ_i, between the mass measured in a given $\gamma\gamma$ sub-sample and the combined $\gamma\gamma$ mass, using three different alternative categorizations to define the sub-samples. The top three points show a categorization based on the photon conversion status: UU is the sub-sample with both photons unconverted, UC the sub-sample with one converted and one unconverted photon, CC the sub-sample with two converted photons. The middle three points show a categorization based on the number of reconstructed primary vertices (N_{PV}) in the event. The bottom three points show a categorization based on the photon impact points on the calorimeter: BB is the sub-sample with both photons detected in the barrel calorimeter, BE the sub-sample with one photon in the barrel calorimeter and one photon in the end-cap calorimeter and EE the sub-sample with both photons in the end-cap calorimeter.
Details on Higgs boson mass measurement

- Pulls and impact on $m_H(\hat{m})$ for the principal constrained nuisance parameters in the $H \rightarrow \gamma\gamma$ and $H \rightarrow 4l$ channels. The fitted value and $\pm 1\sigma$ uncertainties are shown for each parameter by the points and error bars (lower scale). The relative change in $m_H(\hat{m})$ as a result of varying each parameter by its fitted uncertainty (upper scale) is shown in yellow. Parameters are selected and ordered according to their impact on $m_H(\hat{m})$.

ATLAS Preliminary

- $\sigma = 7$ TeV, $\int L dt = 4.5$ fb$^{-1}$
- $\sigma = 8$ TeV, $\int L dt = 20.3$ fb$^{-1}$
W’ searches

- \(W' \rightarrow l\nu \)
- \(W' \rightarrow WZ \) (3 leptons)

ATLAS-CONF-2014-017

ATLAS-CONF-2014-015

- \(W' \rightarrow l\nu \)
- \(W' \rightarrow WZ \) (3 leptons)
Other exotic searches highlights

- **Mono-Z production: window to Dark Matter**

 ![Diagram of Mono-Z production](image1)

 - **Mono-Z production: window to Dark Matter**
 - **Figure 1:** ATLAS data and theoretical predictions for W/Z production in the mono-Z channel.
 - **Figure 2:** ATLAS data and theoretical predictions for W/Z production in the mono-Z channel.

- **Microscopic Black-holes: gravity**

 ![Diagram of Microscopic Black-holes](image2)

 - **Microscopic Black-holes: gravity**
 - **Figure 3:** Plot showing the exclusion limits for microscopic black holes with mass thresholds of 4.8-6.2 TeV at 95% CL.
 - **Figure 4:** Plot showing the exclusion limits for microscopic black holes with mass thresholds of 4.8-6.2 TeV at 95% CL.

 In high pT leptons and jets final state events

 ![Plot of high pT leptons](image3)

 - **Plot of high pT leptons and jets final state events**
 - **Figure 5:** Plot showing the exclusion limits for microscopic black holes with mass thresholds of 4.8-6.2 TeV at 95% CL.

For 6 extra dimensions, mass thresholds of 4.8-6.2 TeV excluded at 95% CL, depending on the fundamental gravity scale and model assumptions.

Monica D’Onofrio, 118th Open LHCC Session 4/06/2014
SUSY searches: top squarks

\[\tilde{t}_1 \to c \tilde{\chi}_1^0 / \tilde{t}_1 \to W b \tilde{\chi}_1^0 / \tilde{t}_1 \to t \tilde{\chi}_1^0 \]

ATLAS Preliminary

- Observed limits
- Expected limits

All limits at 95% CL

\[\tilde{t}_1 \to b \tilde{\chi}_1^\pm, \tilde{\chi}_1^\pm \to W(t) \tilde{\chi}_1^0 \]

\[m_{\tilde{t}_1} < m_{\tilde{\chi}_1^0} + 100 \text{ GeV} \]

CDF 2.6 fb^{-1 \cdot 1203.4171}

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0L</td>
<td>1L</td>
<td>2L</td>
<td>0L</td>
<td>1L</td>
<td>2L</td>
<td>0L</td>
<td>1L</td>
<td>2L</td>
<td>0L</td>
<td>1L</td>
</tr>
<tr>
<td>0.1 - 2.0 fb^{-1}</td>
<td>21.7 GeV</td>
<td>14.0 GeV</td>
<td>10.6 GeV</td>
<td>11.5 GeV</td>
<td>13.0 GeV</td>
<td>12.4 GeV</td>
<td>11.0 GeV</td>
<td>13.5 GeV</td>
<td>13.0 GeV</td>
<td>11.0 GeV</td>
<td>12.2 GeV</td>
</tr>
</tbody>
</table>

Status: Moriond 2014

\[L_{\text{int}} = 20 - 21 \text{ fb}^{-1} \ \text{\(\sqrt{s}\) = 8 TeV} \]

\[L_{\text{int}} = 4.7 \text{ fb}^{-1} \ \text{\(\sqrt{s}\) = 7 TeV} \]
SUSY searches: top squarks

$Z(ll^{'}) + b$-jets + Missing E_T: targets heavier stop (stop2), as window for difficult regions (stop mass close to top mass).

$\tilde{t}_2 \tilde{t}_2$ production, $\tilde{t}_2 \rightarrow Z \tilde{t}_1$, $\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$
SUSY Searches: Weak production summary

ATLAS Preliminary
20.3-20.7 fb⁻¹, √s=8 TeV
Status: Moriond 2014

Results:

<table>
<thead>
<tr>
<th>Process</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^0$, via $\tilde{l}_L / \tilde{\nu}_L$</td>
<td>$3l$, arXiv:1402.7029</td>
<td>$3l$, arXiv:1402.7029</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$, via $\tilde{l}_L / \tilde{\nu}_L$</td>
<td>$2e/\mu$, arXiv:1403.5294</td>
<td>$2e/\mu+3l$, arXiv:1403.5294</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^- / \tilde{\chi}_1^0$, via $\tilde{\tau}L / \tilde{\nu}\tau$</td>
<td>2τ, ATLAS-CONF-2013-028</td>
<td>2τ, ATLAS-CONF-2013-028</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\chi}_1^- \tilde{\chi}_1^0$, via WZ</td>
<td>$2e/\mu$, arXiv:1403.5294</td>
<td>$e/\mu bb$, ATLAS-CONF-2013-093</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\chi}_1^- \tilde{\chi}_2^0$, via Wh</td>
<td>$3l$, arXiv:1402.7029</td>
<td>$3l$, arXiv:1402.7029</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$, via WW</td>
<td>$2e/\mu$, arXiv:1403.5294</td>
<td>$2e/\mu$, arXiv:1403.5294</td>
</tr>
</tbody>
</table>

Equation:
$m_{\tilde{\tau}_L / \tilde{\nu}_L} = 0.5 (m_{\tilde{\chi}_1^0} + m_{\tilde{\chi}_2^0})$

Inequality:
$m_{\tilde{\chi}_1^0} < m_{\tilde{\chi}_2^0}$
$m_{\tilde{\chi}_2^-} = m_{\tilde{\chi}_1^-} + m_{\tilde{\nu}_\tau}$
$m_{\tilde{\chi}_2^-} = m_{\tilde{\chi}_1^0} + m_{\tilde{\tau}_\tau}$
$m_{\tilde{\chi}_2^-} = 2m_{\tilde{\chi}_1^0}$
M-weeks

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIX</td>
<td></td>
<td></td>
<td></td>
<td>X¹</td>
<td>X²</td>
<td></td>
</tr>
<tr>
<td>IBL</td>
<td></td>
<td></td>
<td>X¹</td>
<td></td>
<td>X²</td>
<td></td>
</tr>
<tr>
<td>SCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIL</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBTS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1Calo</td>
<td>X¹</td>
<td></td>
<td>X²</td>
<td>X³</td>
<td></td>
<td>X⁴</td>
</tr>
<tr>
<td>CSC</td>
<td>X¹</td>
<td></td>
<td></td>
<td>X²</td>
<td>X²</td>
<td></td>
</tr>
<tr>
<td>MDT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPC</td>
<td>X¹</td>
<td></td>
<td>X¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGC</td>
<td>X¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCM</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LUCID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lumi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Cosmic Run Nov 24th - Dec 5th

1. TDAQ integration, using events simulated at ROD
2. Test with frontend, detector cold

Notes

- **M4:**
 - Calorimeters, PIX, SCT, IBL
 - Readout only. 2. Full legacy triggering with TIL + LAR
 - CMX triggering both CP/JEP systems, L1Topo Readout Commissioned. 4. L1Topo Commissioned fully in trigger system. Possibly TGC trigger

- **M3:**
 - TRT and RPC Cosmic Trigger
 - LAr moved to M4 (PS refurbishment)
 - Validation of M2 sub-systems
 - HLT chain

All information in P1 Twiki:
https://atlasop.cern.ch/twiki/bin/view/Main/Run2Preparation

Monica D’Onofrio, 118th Open LHCC Session

4/06/2014
Towards Run 2: DC14

- Technical and Physics improvements in offline areas being tested during a **data-challenge in 2014 (DC14)**.
- **The goal is to get ready for Run-2 analyses** and engage a large fraction of the collaboration in the preparation:
 - 500 M of MC events with the run-1 conditions have been simulated.
 - Software has been migrated to the new ROOT-readable Event Data Model (xAOD) and the reconstruction is now about two times faster than run-1 release, thanks to the migration from CLHEP to Eigen libraries, (auto-)vectorization and careful rewriting and optionization of the code.

- **Next steps are:**
 - Reconstruction of the MC with new software and run-1 conditions and reprocessing of 25% of the 2012 data.
 - Test of the new analysis model by the Combined Performance groups and selected physics analyses.
 - Production of MC at 13 TeV and run-2 conditions