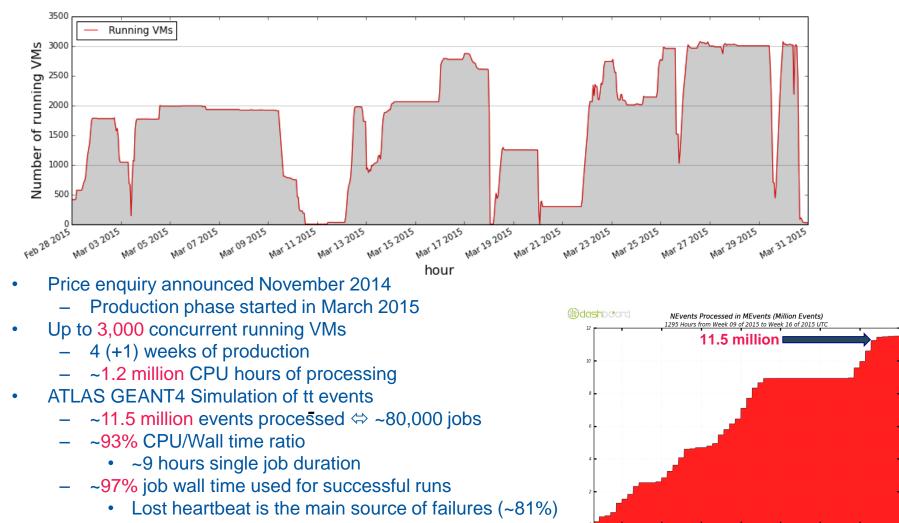
Second Price Enquiry Update

L. Field

On behalf of the IT-SDC WLC Resource Integration Team

CERN Cloud Procurement Activities

- Started in 2011 within the Helix Nebula partnership between
 - Leading research organizations
 - European commercial cloud providers
- Objective is to support the CERN's scientific computing programme
- Improve the CERN procurement process for cloud laaS
 - Evaluate cost and benefit of laaS
 - Transparently integrate commercial cloud IaaS
 - Into the LHC VO's computing infrastructures



Roadmap

- First Procurement March 2015
 - Target a single VO, run simulation jobs
 - O(2000) VMs for 1 month
 - Second Procurement October 2015
 - Target multi VOs, simulation jobs
 - O(4000) cores for 2 months
 - Third Procurement Spring 2016
 - Target multi VOs, full chain data processing
 - O(2 x second procurement)
 - EC co-funded joint Pre-Commercial Procurement (PCP) project
 - See next talk

First Procurement Summary

Experience Gained

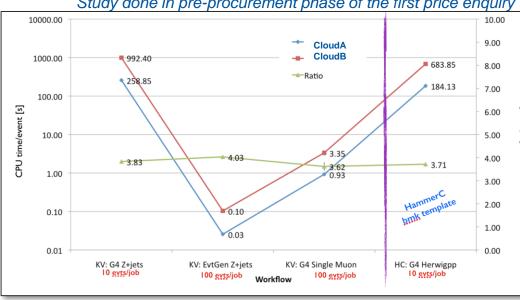
- Managing VMs in commercial laaS
 - Scaling, stability, API usability
- Monitoring, accounting and benchmarking of cloud resources
 - Client-side accounting is essential
 - Validate the invoices received from the provider for resources used
 - Ganglia monitoring is re-purposed for accounting of used resources
 - Real-time usage summaries and periodic reporting
 - Data archival for postmortem analysis
 - Needs follow up on a more tailored solution
 - VM accounting records provided by the VM
 - Monitor the usage of resources and identify inefficiencies
 - Data Analytics from Monitoring
- Benchmarking is a crucial step to commoditize cloud resources
 - Enable a "cloud" exchange
 - See for instance approach of Deutsche Börse Cloud Exchange
 - Required for the procurement procedures
 - Define technical specification, acceptance criteria and remediation options
 - Continuous monitor of the delivery
 - Run a fast benchmark after starting each single VM

Second Procurement

- Go beyond the simulation use-case of the first price enquiry
 - Simulation workload
 - Include all interested LHC VOs
 - Preparation for the EC PCP project with the other research labs
- Timeline (2015)
 - June-July: preparation of Technical Specification Document
 - Aug. 3rd: price enquiry sent to firms (DO-29401/IT)
 - Sept. 17th: closing date
 - Sept. 24th: notification to the selected firm
 - Oct. 1st: run for 2.5 months
- Addressed to single firms or combination of firms from CERN Member States

Specifications

- 1,000 multi-core Virtual Machines
 - 4 vCPU, 8 GB of RAM, 100 GB of storage, public IPv4 address
 - No persistent storage
 - Performance of the VMs qualified in terms of a reference benchmark
 - Defined in the tendering phase
 - Validated during the production activity
- Network
 - Connection to an NREN/GEANT to provide IPv4 connectivity
- API shall support:
 - CernVM or CentOS-6.x based snapshots
 - Accepted APIs
 - Amazon EC2, HNX SlipStream, OpenStack Nova, OCCI, DBCE

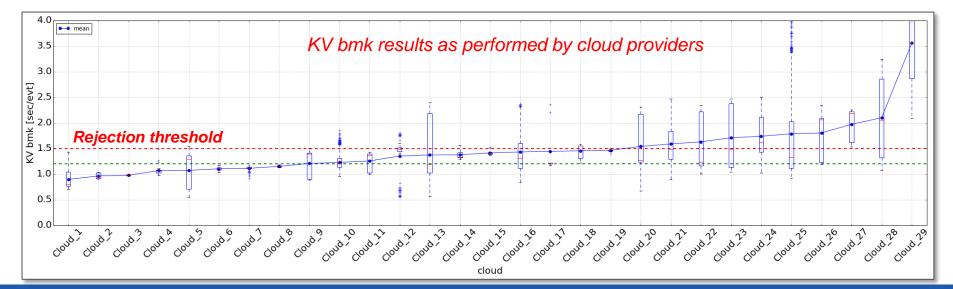

Benchmarking For Procurement

- Activity started in preparation for the first price enquiry
- Evaluated different alternatives based on the following requirements:
 - Open-source
 - Will be shared with cloud providers so they can run it
 - Crucial in tender phase to allow proper selection resources
 - Light-weight installation and reasonably quick to time
 - Run on many instances for fine-grained probing
 - Provide a cvmfs repository to simplify use at scale with CernVM
 - Reproducible
 - If random generation is used
 - Fix random seed in order to have always the same sequence of events
 - Correlates with experiment workloads
 - To extrapolate expectations on job duration
 - Profiting from cloud activities to study this relationship

ATLAS Kit Validation As A Reference

- Which workload to use for benchmarking?
 - CPU time/event is different for each workload
 - Measured that within ~10% the relative CPU/event performance doesn't depend on specific workloads
 - Confirmed also using a different approach: HammerCloud jobs

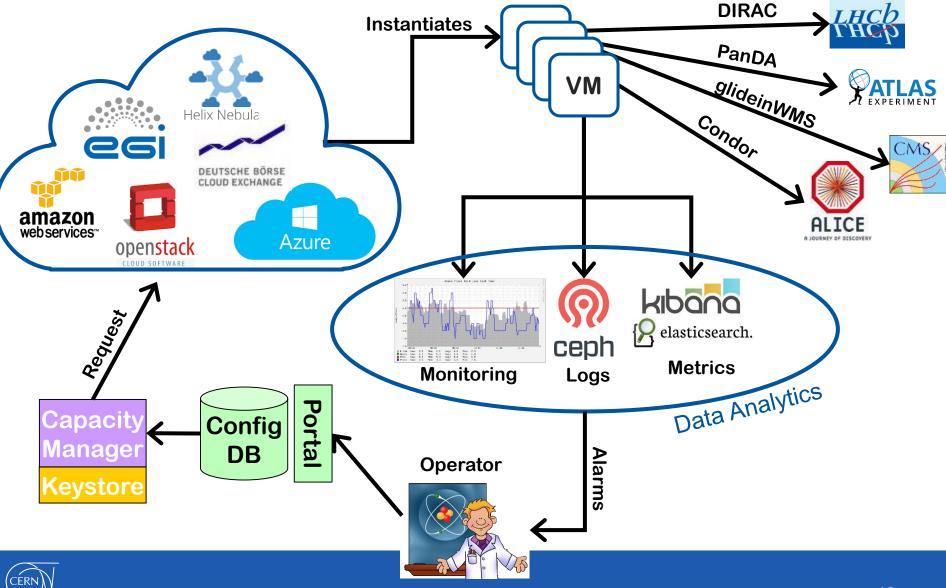
Study done in pre-procurement phase of the first price enquiry


- Preferred workload: **G4 single muon**: faster running time **O(few mins)**
 - NB: the CPU time/event doesn't include the first event, to avoid bias due to the initialization process

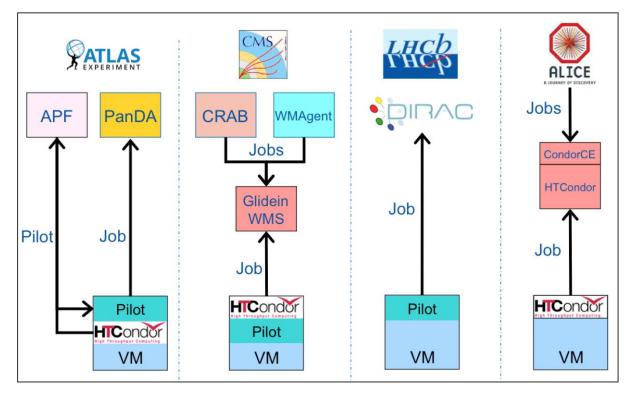
٠

Benchmarking During Procurement

- Tests executed by the suppliers using the KV benchmarking tool
 - They included the sampled performance in the Technical Annex of their bid
 - Two thresholds: Rejection (>1.5 s/evt) and Compensation (>1.2 s/evt)
 - · Reminder: adjudication is on cheapest compliant bid
 - They used it to optimize their setup
 - In some cases they ran thousands of tests!!
- Benchmarking activity monitored in real time (see plot below)
- In some case very good performance but at higher prices



Delivery Status


- Delayed while waiting for GEANT connectivity
 - Expected to start within the next few days
- Service delivery
 - IT-SDC WLCG Resource Integration Team
 - VM provisioning, monitoring, benchmarking, accounting, etc.
 - Experiment liaisons
 - Coordinate VO specific activities
 - Job submission, monitoring, stage in/out, conditions
 - Weekly Daily coordination meetings
 - Deployment progress, feedback from VOs
- Encouraging preparatory phase
 - Using existing credits in commercial providers

Service Delivery

Supporting the diverse approaches

- 4 single-core or 1 multi-core job per VM (4 vCPU)
- Squid proxy cache deployed in each data centre
- Remote storage: Input data from/output data to CERN EOS
- Sharing of resources will be based on interest, requirements and readiness

Readiness

- ATLAS
 - Demonstrated working 4 core VM in multicore mode
 - Already use single core VMs for the first price enquiry
- CMS
 - Demonstrated working 4 core VM in singlecore mode
 - Condor providing four job slots
 - WMAgent to submit production jobs
- LHCb
 - Demonstrated working 4 core VM in singlecore mode
 - Four pilots run simultaneously
- ALICE
 - Single core VM ready for use
 - Following the traditional batch system approach
 - Condor Server with Condor CE deployed by IT-PES
- What still needs to be done?
 - Is there anything missing?
 - Are jobs ready to be sent?
 - Feedback needed on benefit for the experiment
 - To be compared with the cost

Conclusions

- Continuation of the price enquiry series
 - Understand our readiness for commercial clouds
- Improving the procurement process
 - Hidden but crucial aspect
- The importance of benchmarking
 - See Domenico's HEPIX talk for more details
 - <u>https://indico.cern.ch/event/384358/session/12/contribution/25</u>
- The importance of consumer-side accounting
 - Repurposing monitoring data but should consider a tailored solution
- The delivery of the second price enquiry will start within the next few days
 - Target multiple LHC VOs to run simulation workloads
 - No persistent storage
 - Activity will run for 2.5 months
- Service Delivery by the IT-SDC Resource Integration Team
 - In close collaboration with the experiment liaisons

www.cern.ch