The 2014 Kyoto Workshop on HTS Magnet Technology for High Energy Physics The 2nd Workshop on Accelerator Magnet in HTS (WAMHTS-2) at Kyoto university, Japan, November 14, 2014

Recent progress in R&D of REBCO coated conductors and coils at Fujikura

<u>M. Daibo</u>, S. Fujita, M. Igarashi, R. Kikutake, K. Kakimoto, M. Nagata, Y. Iijima, F. Tateno

Outline

Introduction

- Uniformity of REBCO coated conductors (c.c.) and In-field I_c properties
- Characteristics of REBCO coated conductors for 25 T Cryogen-free Superconducting Magnet
- Development of REBCO coils at Fujikura
 - Development of a 5 T 426 kJ REBCO magnet
 - Feasibility study for accelerator magnets

Summary

Fujikura's REBCO coated conductor (IBAD / PLD)

Ion Beam Assisted Deposition (IBAD)

R-to-R system with large ion source

Pulsed Laser Deposition (PLD)

Typical spec. of REBCO c.c. at Fujikura

Typical Specification

Product		te	Width	Thickness	Substrate	Stabilizer	Critical	Current (A)
		13	(mm)	(mm)	(µm)	(µm)	(@	77K, s.f.)
FYS	SC-S	✓ Fujikura will change original wire width from						
FYS	SC-S	conventional 10 mm to new 12 mm wide.						500
		\checkmark	New products	s based on 4	4 mm wide v	will be relea	sed	
	<i>I</i> _c >		in the 1st qua	rter of fisca	l year 2015.			

Schematic of Fujikura's REBCO coated conductors (c.c.)

Uniformity of production wires

> Longitudinal I_c distribution quite uniform $I_c > 500$ A/cm with L > 500 m obtained 800 600 l_c(77 K) (A) 500 400 Wire A Wire B Δ **Current- conduction** 200 Wire C ∇ Measured every 4.7 m $I_{\rm c}$ criterion : 1 μ V/cm 0 500 100 200 300 400 600 700 0 Position (m) Wire A Wire C Wire **B** 1. Piece length 621 m 700 m 587 m 2. *I*_c (max.)* 700 A 590 A 562 A 3. *I*_c (min.)* 649 A 555 A 533 A 4. I_c (avg.)* 575 A 550 A 677 A 5. Uniformity** 6.1 % 5.2 % 7.5 %

*10 mm-W **Uniformity : { I_c (max.) - I_c (min.)} / I_c (avg.) x 100

In-field I_c distribution in a 1 km long demo sample (10-77 K, 3 T)

Uniform I_c >500 A(77K,s.f.) and in-field I_c in wide range of temperatures are observed

🜈 Fujikura

STDEV / average < 5.8%

Longitudinal I_c - θ characteristics at 77 K, 3T

Same samples shown in last page

Outline

Introduction

- Uniformity of REBCO coated conductors (c.c.) and In-field I_c properties
- Characteristics of REBCO coated conductors for 25 T Cryogen-free Superconducting Magnet
- Development of REBCO coils at Fujikura
 - Development of a 5 T 426 kJ REBCO magnet
 - Feasibility study for accelerator magnets

Summary

$I_{\rm c}$ distribution of typical c.c. for 25 T-CSM

I_c -B-T, I_c -B- θ characteristics for high field magnet

 I_c (20 K, 15 T) have stronger correlation with I_c (77.3 K, 0.6 T) rather than I_c (77.3 K, s.f.)

Fuiikura

presented by S. Fujita at ASC 2014

Thickness dependence of I_c for self-field and in-field

🜈 Fujikura

Typical tensile characteristics for the production c.c. at 77.3 K

Typical repeated tensile characteristics up to 10,000 cycles at 77.3 K

Outline

Introduction

- Uniformity of REBCO coated conductors (c.c.) and In-field I_c properties
- Characteristics of REBCO coated conductors for 25 T Cryogen-free Superconducting Magnet
- Development of REBCO coils at Fujikura
 - Development of a 5 T 426 kJ REBCO magnet
 - Feasibility study for accelerator magnets

Summary

Development of REBCO impregnated coils

Fujikura has developed several impregnated REBCO coils

Development of 5 T REBCO magnet with 20 cm bore

- Fujikura's 10 mmw coated conductors
- > Total tape length : 7.2 km (300 m x 24)
- Stored energy : 426 kJ

- Composed of 24 pancake coils
- Total number of turns : 5775
- Operating temperature : 25 K

M. Daibo, et al., IEEE Trans. Appl. Supercond. 23-3 (2013) 4602004

Development process of 5 T 426 kJ REBCO magnet

- Fabricated a model magnet with dummy coils before the fabrication of the 5 T 426 kJ REBCO magnet
- Evaluated a model magnet with dummy coils including thermal runaway test under conduction-cooled conditions
- Fabricated the 24-stacked coil of 5 T 426 kJ REBCO magnet and evaluated the 24-stacked coil in LN₂
- In 2012, Fujikura Ltd. successfully developed a 5 T 426 kJ REBCO magnet with a 20-cm-diam. room temperature bore

Specifications of 5 T 426 kJ REBCO magnet

Parameters	Values
Inner diameter of coil	260 mm
Outer diameter of coil	535 mm
Coil height	271 mm
Number of pancake coils	24
Total tape length	7.2 km (300m x 24)
Total number of turns	5775
Operating temperature	25 K
Operating current	333 A
Central magnetic field	5.0 T
Inductance	7.68 H
Stored energy	426 kJ

Specifications of a model magnet for 5 T REBCO magnet

Parameters	values	
Inner diameter of coil	260 mm (same)	
Outer diameter of coil	515 mm (535)	
Coil height	271 mm (same)	
Total number of pancake coils	24	
- Number of REBCO pancake coils	6	
- Number of "dummy coils" (pancake coils)	18	
Total REBCO tape length	1646 m	
Total number of turns of REBCO coils	1350	
Operating temperature	41 - 77 K	

"dummy coils" : epoxy-impregnated pancake coils using the same dimension copper tapes of REBCO c.c.

Specifications of REBCO c.c. of the model magnet

Parameters	values
Width of coated conductors	10 mm
Thickness of Substrate	0.1 mm
Superconducting layer	GdBCO
Thickness of Cu stabilizer	0.3 mm
Critical current (I_c) (77 K, s.f.) (10 ⁻⁷ V/cm criterion)	350 - 426A

Stabilizer thickness for protection of 426kJ REBCO magnet

The heat balance equations (under adiabatic conditions)

Schematic of the model magnet

compared calculated and measured coil I_c of the top single pancake coil

Comparison of coil *I*_c of the top single pancake coil of the model magnet

and measured coil I_c at 30 - 77 K : within 5%

Thermal runaway test of model magnet at 46 K

 I_{t} = 361 A at 1776 s : a slight increase of voltage of top DPCC is observed

After maintaining for 312 s, I_{t} is ramped down at 1.66 A/s ramp rate

Fujikura

Comparison of the ramped down current of the model coil and predicted current decay profiles of the 5 T 426 kJ REBCO magnet

Thermal runaway test was conducted under stringent conditions of 5 T 426 kJ REBCO magnet

Excitation test results after thermal runaway test

Model magnet with a 0.3-mm-thick copper stabilizer was excited up to 300 A without degradation at 46 K after thermal runaway test

🖊 Fuiikura

started to fabricate 5 T 426 kJ REBCO magnet in 2012

Specifications of 5 T 426 kJ REBCO magnet

Parameters	Values
Inner diameter of coil	260 mm
Outer diameter of coil	535 mm
Coil height	271 mm
Number of pancake coils	24
Total tape length	7.2 km (300m x 24)
Total number of turns	5775
Operating temperature	25 K
Operating current	333 A
Central magnetic field	5.0 T
Inductance	7.68 H
Stored energy	426 kJ

Specifications of REBCO c.c. of 5 T 426 kJ REBCO magnet

Parameters	values
Width of REBCO coated conductors	10 mm
Thickness of Substrate	0.1 mm
Superconducting layer	GdBCO
Thickness of Cu stabilizer	0.3 mm
Critical current (I_c) (77 K, s.f.) (10 ⁻⁷ V/cm criterion)	> 467 A
<i>n-value</i> (77 K, s.f.) (range from 10 ⁻⁸ to10 ⁻⁷ V/cm)	24~38

Calculated coil I_c of 5 T 426 kJ REBCO magnet at 25 - 77 K

Calculated coil I_c of 5 T 426 kJ REBCO magnet at 25 - 77 K

Calculated coil I_c at each temperature

31

V-I characteristics of impregnated pancake coil Fabricated and evaluated an impregnated pancake coil in LN_2 *n-values* of all pancake coils > 24 \implies **No degradation**

Cool down to 77 K of the 24-stacked coil

The 24-stacked coil was carefully cooled down for 1470 min with gas and liquid nitrogen after the fabrication

Measurement result of 24-stacked coil I_c in LN₂

Magnetic field of the 24-stacked coil was measured 1.46 T when the coil I_c reached at 95 A

24-stacked coil was successfully excited up without degradation

Comparison of calculated and measured coil I_c at 77 K

difference between calculated and measured coil I_c at 77 K : 2% calculated coil I_c was in good agreement with measured I_c at 77 K

Schematic of 5 T 426 kJ REBCO magnet

5 T 426 kJ REBCO magnet was fabricated after the evaluation of the 24-stacked coil in LN₂

Cooling characteristics of 5 T 426 kJ REBCO magnet

Initial cooling down

2nd cooling down

M. Daibo et al., IEEE Trans. Appl. Supercond. 23 (2013) 4602004.

Example data of a 720-min. excitation test

The 5 T REBCO magnet was excited up to 5.0 T for 720 min after 2nd cooling

M. Daibo et al., IEEE Trans. Appl. Supercond. 24 (2013) 4900304.

Background magnet for hoop stress test of small pancake coils

The magnet was excited up to 5 T 21 month after the fabrication for example as a background magnet for repeated hoop stress test of small coils

Outline

Introduction

- Uniformity of REBCO coated conductors (c.c.) and In-field I_c properties
- Characteristics of REBCO coated conductors for 25 T Cryogen-free Superconducting Magnet
- Development of REBCO coils at Fujikura
 - Development of a 5 T 426 kJ REBCO magnet
 - Feasibility study for accelerator magnets

Summary

Study of quench behaviors of REBCO coil for accelerator magnet

collaborated with Prof. Tsuchiya and Prof. Ohuchi at KEK

does not depend on the operating temperature
increase with the balance voltage

presented at 25th ICEC/ICMC2014, July, 2014

Small racetrack coil with VPI for accelerator magnets

Feasibility study of sextupole magnet collaborated with Prof. Tsuchiya and Ohuchi at KEK

Heat cycle, conduction cooled test of a small racetrack coil

 \geq Evaluation under conduction cooled condition at 50 K (I_t =202 A, B₀=0.55 T) (load factor : 0.65)

Summary

Iniformity, mechanical and I_c properties of REBCO c.c.

- Focus on uniformity improvement for long-length coated conductors
- Ic (20 K, 15 T) have stronger correlation with Ic (77.3 K, 0.6 T) rather than Ic (77.3 K, s.f.)
- Tensile stress of the mass-produced c.c. was investigated at 77 K

Development of Coils and Magnet

- Fujikura successfully developed the 5 T REBCO magnet
- The magnet has been used as background magnet at Fujikura over 21 month
- Feasibility study for accelerator magnet has been investigated with Prof. Tsuchiya and Prof. Ohuchi at KEK

Thank you for your attention !!

Please visit Fujikura website!!

Global Site

http://www.fujikura.com/solutions/superconductingwire/

Fujikura website

http://www.fujikura.co.jp/eng/products/new/index.html

