

State-of-the-art and future challenges for the quench detection and protection of accelerator superconducting magnet circuits

Andrzej SIEMKO CERN, Geneva

Outline

- LHC quench detection technologies as an example of the state-of-the-art
- Performance of the main quench detector types
- Some limitations in real environment
- Future developments for the quench detection and magnet protection
- Conclusion

Quench detection systems in LHC

- For the detection of quenches in the superconducting circuits of the LHC in total 7568 quench detection systems have been installed
 - 24 main circuits, 8 inner triplets, 94 insertion region and 418 corrector magnet circuits
 - Protection of magnets, HTS current leads and superconducting bus-bars
 - About 14000 hardwired interlocks and 2500 data acquisition systems for supervision
 - LHC quench detection systems are highly dependable systems. Due to the large number and the constraints during LHC operation (restricted access, ionizing radiation, electro-magnetic compatibility ...), the design must not only focus on reliability but also optimize availability and maintainability

Geographical distribution

Ρ

Ρ

P 3 Equipment located under each dipole and quadrupole magnet in the LHC (27km) Ρ

P 8

Special circuit protection located at and around each Point

Ρ

75% of detectors Main circuits protection (DQQDL/DS/BS) installed in the tunnel

25% of detectors IPQ/IPD/IT, 600A circuits protection EE systems (DQQDI/DT/DC/nDI/nD G) installed in UA/UJ/RR

A. Siemko 14/11/2014

The 2014 Kyoto Workshop on HTS Magnet Technology for High Energy Physics –WAMHTS-2

Ρ

7

Technologies of quench detection systems

- <u>Classical systems</u> are mostly using Wheatstone bridges in combination with linear amplifier, comparators and non-programmable digital logic
 - In some cases a programmable devices are used for data acquisition
 - The systems have restricted functionality but are normally extremely reliable and robust
 - Their protection functionality can be verified relatively easy
- <u>Digital systems</u> are actually mixed signal devices
 - Analog input stages based on instrumentation amplifiers for initial signal conditioning, filtering and circuit protection
 - Analog to digital converters for signal digitization
 - Programmable logic devices for the implementation of the detection logic
 - Complex detection algorithms, parameter based dynamic detection settings, non-linear filters etc.
 - Detection functionality not easy to verify
 - Electrical insulation is always provided in the digital signal path

Local quench detector for LHC main magnets

- Analog bridge detector based on state of the art instrumentation amplifiers
- (2 out of 2) || (2 out of 2) hardwired multi-channel evaluation scheme
- Radiation tolerant
- Resolution < 125 μV @ +/-250mV
- Adjustment free fixed threshold detector (U_{TH} = ±100 mV)
- Digitally isolated interface detector circuit on magnet potential
- On-board data acquisition system
- Very reliable operation with 4032 circuit boards installed in LHC

Analog detection system

Wheatstone bridge

Digital high precision quench detection systems

- Based on ADuC834[™]microcontroller with integrated 24 Bit ∑∆ analog to digital converter ADC
 - High resolution < 15 nV @ +/-12.5mV
 - Minimum reaction time t_{EVAL} = 100 ms
- Originally developed for the protection of hybrid HTS current leads, these detection systems are meanwhile also in use for the protection of the bus-bar splices in the LHC main circuits (3266 redundant systems installed in total)
 - Reliable operation with detection thresholds as low as 500 µV
 - Measurement of bus-bar splice resistance with $\Delta R \le 1 n\Omega$
 - Programmable gain based version used for circuit protection and diagnostics during the Copper Stabilizer Continuity Measurement (CSCM) campaigns

Fast digital quench detection systems – 1st generation

- The first LHC general purpose digital detection board has been developed for the protection of insertion region magnets, inner triplets and corrector magnet circuits. It is based on a digital signal processor DSP of the TI TMS320C6211[™] and 14 bit successive approximation (SAR) ADC.
 - The design is not radiation tolerant as not required at the time of the development
 - Resolution < 1 mV @ +/-10V
 - Minimum reaction time t_{EVAL} = 20 ms
- The DSP based approach turned out to be crucial for the commissioning of the corrector magnet circuits as it allowed to implement the complex inductive voltage compensation.
 - A part the inherent sensibility to radiation induced faults, the performance of the system is excellent with respect to reliability and availability
 - The lack of radiation tolerance and the obsolescence of key components called for a system upgrade
 - Major part replaced during LS1, to be completed over the next years

Fast digital quench detection systems – 2nd generation

- Radiation tolerant fast digital quench detection systems have been developed for the symmetric quench detection in LHC main dipoles and quads.
 - Based on Microsemi ProAsic3[™] field programmable gate array (FPGA) and 16 Bit SAR ADC
 - Resolution < 500 μV @ +/-10V
 - Minimum reaction time $t_{EVAL} = 20 \text{ ms}$
 - All critical components extensively tested for radiation tolerance
 - 4 isolated input channels (ADC on magnet potential) for the comparison of different magnet voltages
 - Successful operation since 2009 (1632 units)

Fast digital quench detection systems – 2nd generation v2

- Based on the experience gained during the development of symmetric quench detection board a variety of detection and data acquisition systems has been produced and deployed during LHC LS1.
- The detection boards are used for the protection of insertion region magnets; the latest development will be used for the 600 A corrector magnet circuits.
 - Resolution < 20 μ V @ +/-10V
 - Minimum reaction time $t_{EVAL} = 20 \text{ ms}$
 - This board makes use of a larger FPGA and fast high resolution 24 Bit ∑∆ ADCs allowing to replace a complex analog/digital feedback loop used in the original device
 - Qualification of the ADC and the development of efficient error correction algorithms has been a major challenge

Outline

- LHC quench detection technologies as an example of the state-of-the-art
- Performance of the main quench detector types
- Some imitations in real environment Future developments for the quench detection and magnet protection
- Conclusion

Performance of local analogue bridge detectors

- DQAMCMB
- Main dipole quench protection
- Resolution and range: 122µV@+/-0.25V
- •
- Source data
- Logging DB
- Measurement DB
- Signal description
- LHC Power Converter Measured Current
- Analogue output of the bridge (1st comparator)
- Signal name
- RPTE.UA63.RB.A56:I_ME
 AS
- MB.B27R5:U_QS0
- Peak-to-peak Voltage
- 6.227E-3
- RMS voltage
- 1.635E-3
- DC voltage
- 1.129E-3

Performance of digital high precision detectors

• DQAMGSRB

- Main dipole SC bus bar protection
- Resolution and range: 1.53nV@+/-12.8mV
- •
- Black/Red
- Source data
- Logging DB
- Measurement DB
- Signal description
- LHC Power Converter Measured
 Current
- Calculated resistive voltage
- Signal name
- RPTE.UA63.RB.A56:I_MEAS
- DCBB.23L6.R:U_RES
- •
- Peak-to-peak Voltage
- 100E-6 L_{bus-bar}dl/dt during ramping
- 10E-6÷20E-6 noise night/day
- RMS voltage
- 10.178E-6
- DC voltage
- -3.547E-6

Performance of digital high precision detectors

DQAMGSRQ

Main quadrupole SC bus bar protection

- Resolution and range: 1.53nV@+/-12.8mV
- •
- Black/Red
- Source data
- Logging DB
- Measurement DB
- Signal description
- LHC Power Converter Measured Current
- Calculated resistive voltage
- Signal name
- RPTE.UA63.RB.A56:I_MEAS
- DCQFQ.14L6.L:U_RES
- •
- Peak-to-peak Voltage
- 164.534E-6
- RMS voltage
- 16.912E-6
- DC voltage
- -13.830E-6

Performance of digital high precision detectors

• DQAMGSRB

<u>RB HTS part of current</u> lead

- Resolution and range: 6.5nV
 @+/-12.8mV
- •
- Black/Red
- Source data
- Logging DB
- Measurement DB
- Signal description
- LHC Power Converter Measured
 Current
- HTS part current lead
- Signal name
- RPTE.UA63.RB.A56:I_MEAS
- DFLAS.5L6.RB.A56.LD2:U_HTS
- Peak-to-peak Voltage
- 130.000E-6
- RMS voltage
- 52.014E-6
- DC voltage
- -48.091E-6

Outline

- LHC quench detection technologies as an example of the state-of-the-art
- Performance of the main quench detector types
- Some limitations in real environment
- Future developments for the quench detection and magnet protection
- Conclusion

Example of transient perturbations in circuit powering devices - intrinsic signals seen by the QPS system

• Delays have been set in the switch opening electronics to separate the 3 events

• Slowing fast transients reduces impact of perturbations: snubber capacitors, more dumping in the converter filter and new crowbar output configuration

FPA voltage measurements in Sector 67 – Dipole circuit

Before snubbers & additional filter resistors

After snubbers & additional filter resistors

The snubber capacitors effectively reduce the voltage oscillations across the dipoles caused by the switch opening. (time 0-350 ms)

The additional resistors in the power-converter filter damp faster the oscillations due to the power converter ringing. (time 350-600 ms)

The presence of **unbalanced dipoles**: there are dipoles which are **oversensitive** to any voltage wave propagating through the circuit.

The voltage difference between the apertures of such dipoles is 5-6 times higher than expected.

The phenomenon peaks at 2 kA and it is not limited to the transient after the power converter shut-down.

A. Siemko 14/11/2014

Example of a thunderstorm perturbation

Splice Resistance Monitor A12.RQD/RQF, 2011/06/22, 17:23:00-17:25:19, Imax= 0A U RES SPLICE (time) Zinour Charifoulline, TE-MPE-CP -700.0uV -600.0uV BB3R1 RQI -500.0uV 500u\ #22/06/2011 **17h24**: -400.0uV P1, P2, P4, P5 -300.0uV ROI - more than 12 channels -200.0uV -100.0uV above 500uV; -0.0V - EMC effect is stronger in the -100.0u\ middle of the arc: -200.0u\ --300.0u\ - EE switches were already -400.0u\ open; -500.0uV

-600.0u\ -700.0u\ Most likely it would trip the 17:23:57.3 17:24:27.3 17:24:37.3 17:23:47.3 17:24:07.3 17:24:17.3 17:24:47.3 17:24:53.2 22/06/2011 22/06/2011 22/06/2011 22/06/2011 22/06/2011 22/06/2011 22/06/2011 22/06/2011 circuit. Time 00:0 🔶 🗩 🔶

The 3.5TeV "Media-Day Trip"

On March 30th 2010 the international media were watching the first 3.5TeV collisions in the LHC. During the first attempt to ramp to collision energy, RQF.A81 tripped 1891 A and RQF.A12 tripped at 2151A about 90sec after sector 81.

ý

A. Siemko 14/11/2014

Outline

- LHC quench detection technologies as an example of the state-of-the-art
- Performance of the main quench detector types
- Some limitations in real environment
- Future developments for the quench detection and magnet protection
- Conclusion

Fast digital quench detection systems – future developments

- Future developments will profit from the on-going progress in electronics
 - Increasing capabilities of FPGA allow simplified designs using less components
 - FPGA development tool chains are as well improving reducing significantly the time for firmware development and verification
 - Shorter quench evaluation time is feaseable
 - For radiation exposed systems the identification and qualification of suitable ADCs remains a major challenge

Protection by CLIQ method – Coupling Loss Induced Quench

New and very promising quench protection system

Capacitive discharge \rightarrow Oscillating current in the two sides of a SC magnet \rightarrow Oscillating magnetic field \rightarrow Coupling losses \rightarrow Temperature increase above T_{CS}

- Heat deposited directly inside the SC wires (not relying on heat propagation through insulation)
- Stand-alone or hybrid system
- Only requires small conductor attached to the midpoint of a magnet (\rightarrow cheap and robust)

Many test performed on model LTS magnets with very good results

Conclusion

- Detection and protection against quenches in HTS magnets and large scale devices has proven to be a difficult engineering task
 - This is largely due to a very slow normal zone propagation in HTS conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state
- Modern voltage detection schemes seems to be capable to detect "on time" a normal zone developed within the HTS conductor for largescale HTS devices, like accelerator magnets, electric power devices and research purpose magnets
 - Challenging limitations in real environment mainly due to EMC
- Alternative methods of quench and hotspot detection for the HTS wires and coils that are based on local magnetic field sensing and/or local temperature excursions should further be developed as their sensitivity can be superior to the known voltage detection schemes. A unique feature of these methods is their capability to remotely detect instant of quench precursor, even well before a normal zone is developed within the conductor
 - Importance of redundant quench detection in complex HTS magnet systems

Acknowledgment

 Many thanks to R. Denz, J. Steckert, Z. Charifouline and E. Ravaioli for fruitful discussions and providing materials for this presentation

Unexplained nQPS.BS trip at P8, 16/06/2011

LHCOP 16/06/2011 14:49: Global Post Mortem Event Confirmation

Dump Classification: Other Operator / Comment: stefano / Trip of the main quads in S81 - MP3 investigating the source of the trip.

No information found from SPS&Injection team – ALL OK.

UFO or Tramp AUG?

A81: 98 -> 99

A. Siemko 14/11/2014