

Conductor progress in EuCARD-2 Overview of electrical, mechanical and thermo-physical properties of REBCO CCs

Carmine SENATORE

Département de Physique de la Matière Condensée & Département de Physique Appliquée Université de Genève, Switzerland

Amalia BALLARINO, Luca BOTTURA

Anna KARIO, Wilfried GOLDACKER

UNIVERSITÉ DE GENÈVE

Christian BARTH, Marco BONURA, Carmine SENATORE

Arnaud BADEL, Johnny HIMBELE, Pascal TIXADOR

Southampton Y

Yifeng YANG

UNIVERSITEIT TWENTE.

Marc DHALLÉ, Peng GAO, Simon OTTEN, Sander WESSEL

BRUKER Alexander RUTT, Alexander USOSKIN

Outline

- From the magnet to the cable design
- Overview of the industrial REBCO CCs
- *I_c(B,T,θ)* surface, scaling law for the temperature and field dependences
- Critical current under mechanical loads on tapes and cables
- Thermo-physical properties: thermal conductivity and normal zone propagation velocity

Scope of WP10.2 in EUCARD²

- WP10 goal is the development of an accelerator-quality dipole demonstrator magnet based on HTS (40 mm/5 T in a 15 T background)
- Objectives of the task WP10.2
 - Improve the performance of the 2 candidate HTS materials (REBCO and Bi2212)
 - Characterize electrical and mechanical properties of the basic materials (wires and tapes) and cables
 - Select concepts & produce 10kA-20T HTS cable for coil winding

REBCO-based dipole magnet: 2 designs

Aligned block design

G. Kirby & J. Van Nugteren

• Cosine-theta design

0.02 0.04

X [m]

Both designs rely on a 12-mm wide Roebel cable

REBCO Roebel cable baseline

design current : 5 to 10 kA @ 20 T, 4.2 K cable width : 12 mm # of tapes : 15 transposition length : 226 mm

Overview of the industrial CCs

	MOD Dip-coating	PLD	PLD RCE Co-evaporation		$\frac{PLD}{1}$	MOCVD hemical vapor
						\mathbf{A}
	Superconductor	BRUKER	🗲 Fujikura	SUNAN	SuperOx	SuperPower Inc. A Furukawa Company
RABiTS	X					
IBAD		X	X	X	X	X
physical deposition		X	X	X	X	
chemical deposition	X					X
in situ <i>process</i>		X	X		X	X
ex situ <i>process</i>	X			X		
substrate	NiW 75 μm	SS 100 μm	Hastelloy 75 µm	Hastelloy 60 µm	Hastelloy 60 µm	Hastelloy 50 μm
thermal stabilization	Laminated (2 sides)	Electroplated	Laminated (1 side)	Electroplated	Electroplated	Electroplated

Tapes from Bruker HTS

	T002	T150	T191	T190	
Width	4.05 mm		4.2 mm		
Thickness	150 μm		200 µm	195 µm	
Substrate material	Stainless steel				
Substrate thickness	97 μm				
Buffer layer	ABAD-YSZ + PLD CeO ₂				
REBCO thickness	3.8 µm	0.9 μm	2.0 μm		
Ag thickness	1.0 μm		1.8 µm		
Cu thickness	50 µm		100 µm	90 µm	
I _c (77K,s.f.)	109 A	25 A	54 A	47 A	
I _c (4.2K,19T,⊥)	216 A	148 A	436 A	480 A	
Thick REBCO Thin REBCO APC + crystal defects w/o APC with APC					

B-HTS Tape T150 : an illustrative measurement

$I_c(77K, s.f.) = 25 A - width = 4 mm$

RE123 thickness = 0.9 μm

For $\theta = 90^{\circ}$ (B//ab), samples with reduced width (1 mm) were prepared either by chemical etching or by spark erosion

Angular dependence of I_c at high fields

I_c(4.2*K*,19*T*) = **42** *A*/*mm*-*width B*//*c*

 $I_{c}(4.2K,19T) = 16 \text{ A/mm-width B//c}$

I_c(4.2*K*,19*T*) = 35 *A*/*mm*-width *B*//*c*

I_c(4.2*K*,19*T*) = 24 A/mm-width B//c

Working on a general scaling law for $J_c(B,T,\theta)$

B [T] Only a limited portion of the critical surface is practically accessible from transport measurements

Magnetization measurements are the tool to explore a larger region of the critical surface

5K < T < 77K -9T < B₁ < 9T

Temperature dependence of J_c from magnetization

Temperature scaling law
$$J_{c}(B,T) = J_{c}(B,T=0)e^{-\frac{T}{T^{*}}} \Rightarrow \frac{J_{c}(B,T_{1})}{J_{c}(B,T_{2})} = e^{-\frac{T_{1}-T_{2}}{T^{*}}}$$

T* ranges between 15 K and 35 K – it depends on field

 $\theta = 0^\circ - B//c$

Field dependence of J_c from magnetization

 α ranges between 0.5 and 0.8 – almost constant below 40 K

$$\theta = 0^\circ - B//c$$

Temperature and field dependence of J_c , varying θ

Semi-empirical scaling law for J_c(B,T)

For temperatures below 40K, critical surface J_c(B,T) in the form

$$J_{c}(B,T) = J_{c}(B=0,T=0)B^{-\alpha}e^{-\frac{T}{T^{*}}}$$

- α almost constant in temperature
- T* depending on magnetic field

Minimum dataset to get the J_c(B,T) surface:

- Magnetization data for 4K < T < 50K
- Transport I_c at a single temperature Field range has to overlap with magnetization data

Engineering J_c and layer J_c: Overall comparison @4K

The line in the gap is a $B^{-\alpha}$ fit of the data

Spread among the manufacturer is reduced when $B \perp c$, as deduced from the angular dependence

Master Plot: J_c(77K,s.f.) vs. J_c(4.2K,19T)

Critical current depends on

- temperature
- field intensity
- field orientation
- stress

I_c vs. axial strain: measurement method

Walters spring (WASP)

- Sample is soldered to Ti-alloy spring
- Turning the spring strains the sample

- calibrated with strain gauges glued to the sample
- sample is pre-strained upon cooldown due to thermal expansion mismatch
- pre-strain is determined & subtracted
- 1m-long sample
 - precise
 - low noise
 - \rightarrow low I_c criteria
 - \rightarrow get n values

Dependence of I_c on axial strain @ 4.2 K, 19 T

I_c vs. applied strain

n value vs. applied strain

Fujikura & SuperOx: delamination \rightarrow steps \rightarrow lower ε_{irr}

C. Barth, C. Senatore et al., submitted to SuST

Stress vs. strain measurements @ 4.2 K

C. Barth, C. Senatore et al., submitted to SuST

Dependence of I_c on axial stress @ 4.2 K, 19 T

I_c vs. applied stress

n value vs. applied stress

- All samples have a very similar behaviour
- Very low stress effect \rightarrow curves are flat in rev. region
- Irreversible limits σ_{irr} in 740 840 MPa range

C. Barth, C. Senatore et al., submitted to SuST

Mechanical behavior of cables under transverse stress

Stress concentrates in REBCO Roebel cables submitted to transverse loads

J. Fleiter et al., SuST 26 (2013) 065014

The problem can be avoided using an appropriate impregnation

UNIVERSITEIT collaboration in the frame of

Vacuum impregnation with Araldite and 50% fused silica of a dummy Roebel cable

WENTE

A. Kario et al., ICEC-ICMC 2014

Mechanical behavior of cables under transverse stress

- Roebel cable made with 10 SuperPower tapes SCS12050-AP
- Vacuum impregnation with Araldite and 50% fused silica
- Preliminary results encouraging, $\sigma_{\rm irr} \sim 250$ MPa

Thermal conductivity of REBCO CCs

Thermal conductivity is an essential parameter for QUENCH studies

• Longitudinal thermal conductivity in magnetic fields up to B=19 T

B perpendicular & parallel to thermal current

• Transverse thermal conductivity

Longitudinal thermal conductivity

$$\kappa_{exp} = \sum_{i} \kappa_{i} \frac{S_{i}}{S_{tot}} \approx \kappa_{Cu} \frac{S_{Cu}}{S_{tot}} \text{ and } \kappa_{Cu} = f(RRR_{Cu})$$

Manufacturer	RRR _{Cu} [fit]	RRR _{Cu} [$ ho(T)]$	S _{Cu} /S _{tot}
AMSC	20	19	0.51
BHST	14	17	0.20
FUJIKURA	62	59	0.44
SUNAM	69	61	0.34
SUPEROX	13	14	0.27
SUPERPOWER	39	42	0.40

 κ (T,B=OT) can be estimated (±15%) from RRR_{cu} and S_{cu}/S_{tot}

Cu/non-Cu ratio and RRR_{Cu} determine the in-field variation of κ

M. Bonura, C. Senatore, SuST, in press

Transverse thermal conductivity

κ_T is dominated by the substrate
 Measurements are challenging because of
 the reduced thickness of CCs ~ 10 mK

From the ratio between κ_T and κ_L we can calculate the ratio between longitudinal and transverse NZPV

M. Bonura, C. Senatore, IEEE TAS, in press

Conclusions

- Explored the $J_c(B,T,\theta,\sigma)$ surface for CCs from 6 manufacturers
- Scaling law of J_c(B,T) with an exponential T dependence and a power-law B dependence
- Irreversible limit σ_{irr} under axial loads in 740 840 MPa range for all manufacturers
- Impregnated Roebel cable withstands transverse loads up to 250 MPa
- Direct measurements of in-field thermal conductivity for quench propagation studies

Temperature and field dependence of J_c , $\theta = 45^{\circ}$

New setup for thermal conductivity measurements up to 21 T

- Control of conduction, convective and radiative heat losses (error in Q<0.05%)
- Thermometers calibrated up to 21 T
- Wide temperature range 3-300K

M. Bonura & C. Senatore, IEEE TAS <u>23</u> (2013) 6000404

NZPV measurements at UTWENTE

UNIVERSITEIT

TWENTE.

J. Van Nugteren et al., ICEC-ICMC 2014

Puzzling result: normal zone propagation velocity depends on current but not on temperature