

HTS Roebel Cable strand alignment within cables and during coil winding

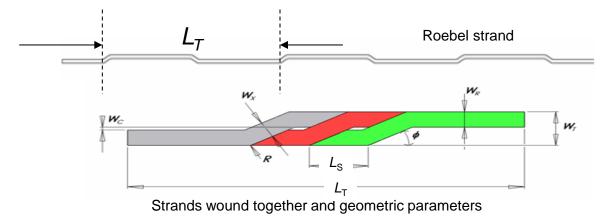
Dr Nick Long, Robinson Research Institute, Victoria University of Wellington, New Zealand

WAMHTS-2, November 2014

Acknowledgements: Evgeny Talantsev, Rod Badcock, Chris Bumby, Zhenan Jiang, Wolfgang Nick (Siemens), Konstantinos Bouloukakis

Contents

- Strand alignment in HTS Roebel cables
- Simple model: Effect of random error ΔL_{T} for strands
- Strand manufacturing process
- Results for individual transposition lengths
- Results averaged over longer strand lengths
- Cable assembly
- Coil winding
- Next steps
- Conclusions



HTS Roebel cable

Fundamental issue

· Geometry of strands is fixed before cable and coil assembly

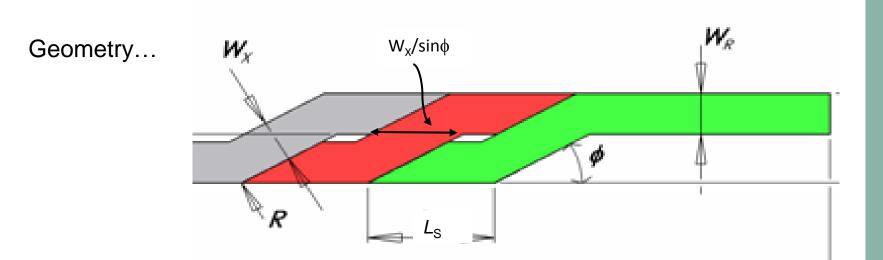
- For a fixed architecture (N, L_T , W_x , ϕ) there is an absolute minimum L_s (strand-strand spacing), this is point at which strands mechanically contact
- A higher practical minimum L_S may be set by behaviour with transverse stress

Recall Fleiter et al, WAMHTS-1

Simple random error model

- Assume $(L_T)_i = \overline{L}_T + \Delta x_i$
- Cumulative error $(\Delta X)^2 = n(\Delta x)^2 = (\frac{L}{L_T})(\Delta x)^2$ n= # of transpositions

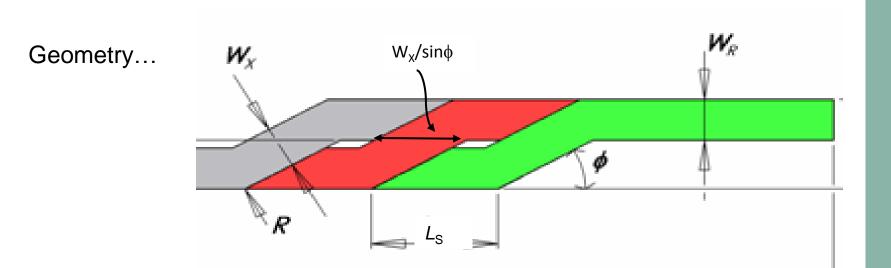
Maximum length of cable that can be wound


$$L_{max} = L_T \left(\frac{\Delta X_c}{\Delta x}\right)^2$$

Maximum cumulative error

$$\Delta X_c = \frac{L_S - (L_S)_{min}}{2} \qquad L_s = L_T / N, \text{ designed spacing}$$

• Need to estimate $(L_{\rm S})_{\rm min}$

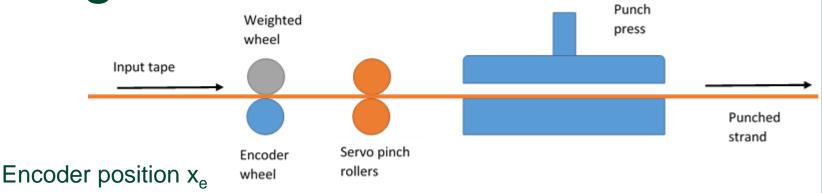

 $(L_{\rm S})_{\rm min} = {\rm W}_{\rm X}/{\rm sin}\phi$

For 15/5 cable with L_T = 300 mm L_S = 20 mm Absolute $(L_S)_{min}$ = 12.0 mm ΔX_c = 4.00 mm,

E.g. $\Delta x = 1 \text{ mm} (0.3\% \text{ of } L_T)$ $L_{\text{max}} = 0.3 * 4^2 = 4.8 \text{ m}$

 $\Delta x = 100 \ \mu m \ (0.03\%)$ $L_{max} = 0.3 \ * \ 40^{2} = 480 \ m$

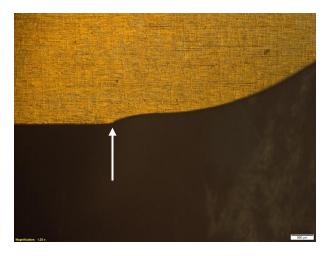
 $(L_{\rm S})_{\rm min} = {\rm W}_{\rm X}/{\rm sin}\phi$


For 15/5 cable with $L_{\rm T}$ = 300 mm $L_{\rm S}$ = 20 mm Absolute $(L_{\rm S})_{\rm min}$ = 12.0 mm $\Delta X_{\rm c}$ = 4.00 mm,

E.g. $\Delta x = 1 \text{ mm} (0.3\% \text{ of } L_T)$ $L_{\text{max}} = 0.3 * 4^2 = 4.8 \text{ m}$

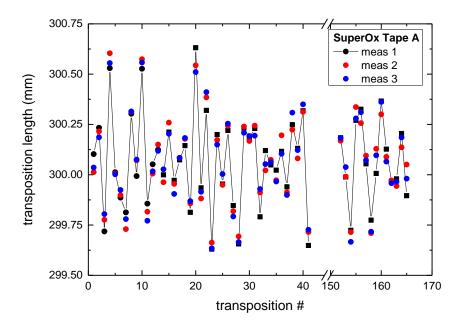
 $\Delta x = 100 \ \mu m \ (0.03\%)$ $L_{max} = 0.3 \ * \ 40^{2} = 480 \ m$ Systematic strandstrand error is much more problematic $\Delta X_c = n * \Delta x_c$

Length control


- Roller position x_r
- Rollers have a PID control can undershoot or overshoot target position (can't go backwards)
- Algorithm
 - Calculate error $E_e = (x_e x_{0e}) nL_T$
 - Feed (full speed) $0.9L_T E_e$
 - Calculate error $E_e = (x_e x_{0e}) (n + 0.9)L_T$
 - Feed (half speed) $0.1L_T E_e$
 - Punch
- Assumed trade off between speed and accuracy of each (L_T)_i
- Algorithm continually corrects for previous errors

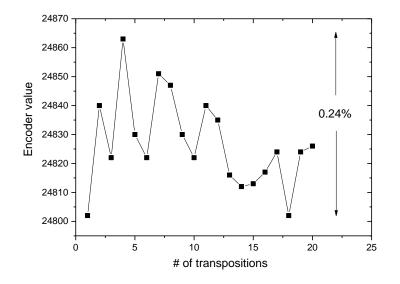
Measuring L_{T}

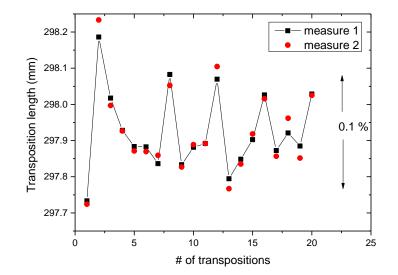
- Distance measured with laser interferometer on a 4 m bench
- Requires locating punching 'defect' in strand with microscope
- 10 N tension applied to strand


8

Length standards laboratory

Individual transpositions

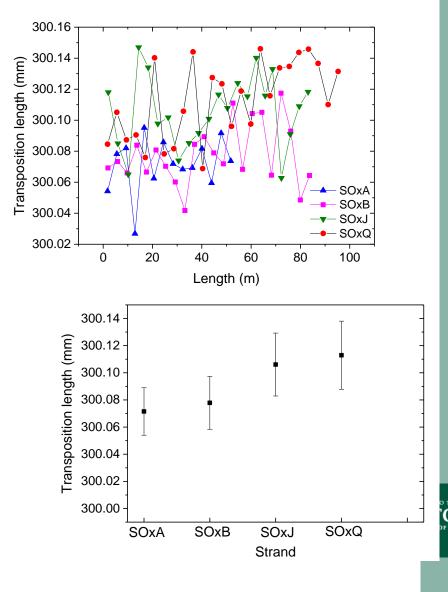

- Any individual measurement has reproducibility of ~ 30 μm
- $(L_{\rm T})_{\rm i+1} (L_{\rm T})_{\rm i} \sim 0.75 \,\rm mm$ (0.25%)
- Tend to get an oscillating structure to measurements
- Origin: feed roller or encoder or measurement error?



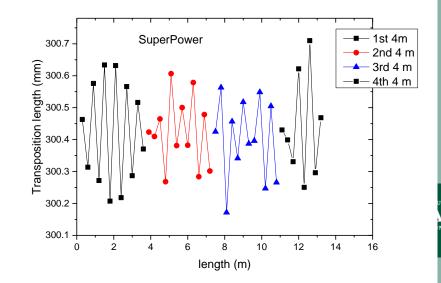
TE WHARE WĀNANGA O TE ŪPOKO O TE IKA A MĀU VICTORIA UNIVERSITY OF WELLINGTON

Experiment: Feed fixed roller increments and mark tape

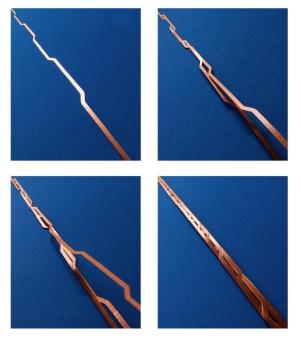
- Length error is ~ 0.1%
 Then check encoder values
- Encoder variation ~ 0.24%


Conclusion: encoder less accurate than roll feeder - May still have measurement error

Averaged transpositions (4 m)


- Punched SuperOx 'dummy' tape
- Much more consistent \overline{L}_T
- Results for up to 90 m length
- Overall random σ = 25 μ m
- Some evidence for systematic errors between tapes Δx ~ 20 μm
- Systematic $\Delta x \sim 20 \ \mu m$ limits cable length to $L_{max} = L_T \frac{\Delta X_c}{\Delta x}$

Ξ


Conclusions on δL_T

- Adjacent transposition variations are large at present settings
- Averaged random errors are acceptable
- Systematic errors need more investigation
- No difference between tape manufacturers

Cable assembly

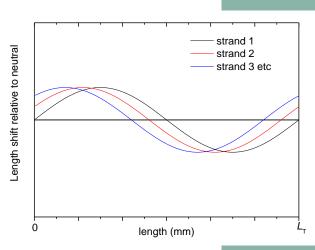
Illustration of the assembly process

Automated planetary wind system for 15/5 cable

Assembly issues

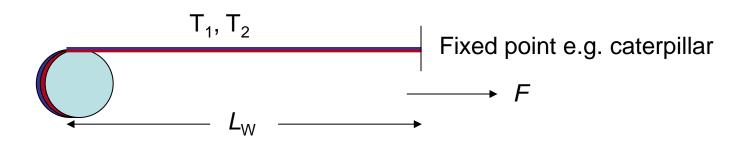
- How to set initial alignment of strands?
 - To date done 'by eye'
 - Can we average over more than 1 transposition?
 - 'By eye' means error of +/- 1 mm
- Current assembly process uses low tension; tension of strands along cable axis is not constant during winding
 - Does this matter?
- Does a caterpillar take-up help strand alignment?
- Is a large diameter take up spool necessary? d >> L_T

This is all work in progress!


Winding coils

- Simplest case: solenoid coil
 - Strands equivalent; no relative shifts of position due to winding
- Racetrack
 - Relative strand positions shift around a curve
 - Model by W. Nick

$$\delta r = A\cos(\frac{2\pi x}{L})$$

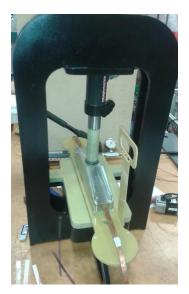

Position of strand relative to neutral axis of cable

$$\partial L = A \frac{\pi}{2} \frac{\sin X}{X}, X = \frac{\pi^2 R}{2L}$$

- E.g. for 15/5, corner radius, 90°, R = 100 mm, maximum shift is δL = 0.4 mm
- Question is how this shift is accommodated...
- Also, how it adds to other errors...

Winding coils (cont)...

- Imagine 2-strand cable, wind on by $\boldsymbol{\pi}$
- $\Delta I = d * \pi (d \sim cable thickness)$
- Now $T_1 \neq T_2$
- Apply force, *F*, to ensure strands in tension
- Implies a minimum L_W (to keep higher strain below ϵ_{irr})


Roebel coil results


- RRI transformer solenoid
 - Successful $I_{\rm c}$ retention
 - 15/5 cable, 220 N winding force, not potted, single turn, Young's modulus E=31.3 Gpa
 - Drum pay-off
- Siemens small racetracks
 - Successful $I_{\rm c}$ retention
 - 7/5 reinforced cable, potted, 6-10 turns, similar
 Young's modulus
 - Caterpillar pay-off

Further work

- What is a more realistic limit of ΔX_c ?
 - transverse stress testing of bare and potted cable
 - In-situ $I_{\rm c}$ measurement

Work in progress!

Further work

• L_{T} variations

- Improve encoder mechanics

- Cable assembly
 - Testing of caterpillar
 - Long length alignment
- Coil winding
 - Can strand shift be accommodated by geometry choices?

Conclusions

- Data for ΔL_{T} shows random and systematic errors
 - No issues for short length cables
 - Systematic errors require investigation will limit length
- Work on assembly issues is in progress
- Coil winding creates strand shifts which can be modelled
- Understanding ΔX_c issues is in progress through pressure I_c measurements

Thank you for your attention!

