

Magnet technology in the NHMFL 32 T **HTS-LTS** solenoid

H.W. Weijers

Magnet Science & Technology Division Applied Superconductivity Center National High Magnetic Field Laboratory, Tallahassee, FL, USA

WAMHTS-2 in Kyoto – Nov. 13, 2014

This work was supported in part by the U.S. National Science Foundation under Grant No. DMR-0654118, DMR-1157490, DMR-0923070 and the State of Florida.

Outline

- Introduce the 32 T all-superconducting magnet
- Prototype testing
- REBCO CC Quench modeling

The 32 T magnet: a user magnet

H.W. Weijers on 32 T magnet technology- WAMHTS-2 Kyoto, Nov 13, 2014

32 T Technology Development

H.W. Weijers on 32 T magnet technology– WAMHTS-2 Kyoto, Nov 13, 2014

32 T design features

Parameter	Unit	ReBCO Coil 1 (inner)	ReBCO coil 2 (outer)
IR/OR/height	mm	20/70/178	82/116/320
Double Pancake modules	-	20	36
Total tape length	km	2.8	6.6
J _{ave}	A/mm ²	176	196
<i>I</i> _{operating}	А	180 (≤ 70	0% of <i>I</i> _c)
J _{cu}	A/mm ²	44	ŀ0
Hoop stress*	MPa	400	440

*: simple hoop stress versus 600+ MPa critical stress,

actual strain reduced via insulated co-wound tape

- 4 mm wide ReBCO tape with nominally 50 μ m Cu plating (0.41 mm²)
- Dry wound double pancake modules
- Thin ceramic insulation on co-wound steel tape for turn-turn insulation
- Active quench heaters capable of heating ~ 50% of coil volume > T_{cs}
- Axial pre-load
- SuperPower tape

32 T design features

Feature	Reason	Long term Perspective	
Dry-wound	Allows re-work & repairs, avoids delamination issue	Mechanical integrity of epoxy impregnated windings preferred	
Cu-plated stabilizer	All 32 T magnet technology developed using SuperPower tape	Prefer a truly flat tape. Dog bone + dry wind \rightarrow voids \rightarrow mechanical instability? Helium in voids not needed for stability	
Monolithic conductor	No cable option in 2009; allows series operation with LTS in future (not in 32 T)	Prefer cable (if $J_{ave} \ge 200$ A/mm ²) + dump resistor	
Quench heaters to heat 50% coil > T_{cs}	Low NZPV	10-fold improvement of NZPV is still slow. Prefer cable + R_{dump}	
Pancake coils	Modularity; large quench heater interface area; simpler insulation compared to layer winding	Prefer pancakes without interna joints, layer winding or cable windings	
Internal joints	10 km worth of ≥150 m piece lengths not commercially viable (at the time)		
Axial pre-load	Keep terminals with coil, take out initial softness	Softness linked to dry winding; terminals always complex	
AGLAB	H.W. Weijers on 32 T magnet technology– WAMHTS-2 K	yoto, Nov 13, 2014 6	

Prototype coils

Much extra instrumentation

Coil 2 prototype

Coil 1 prototype with instrumentation and wiring

Combined prototype coil test in 45 T Hybrid Outsert

Mitigation:

Maximize axial thermal conductivity

- Circumferential κ is fixed, radial κ and NZP are poor given dry coil & dog bone
- Narrow tolerance on conductor width \rightarrow flat pancakes
- Axial pre-load via Belleville washers & axial compression straps on flanges
- This is beneficial for heat exchange with bath and quench propagation
- Cu strips and helium vent channels in "cooling spacer" at ends of coils

CX= Cernox™ temperature sensor, Cap= capacitive gas/liquid sensor

- Bubble forms as calculated
- Size is ~ same in prototypes and 32 T
- Coil temperature remains stable with mitigation

H. Bai, S.T. Hannahs, W.D.. Markiewicz, and H.W. Weijers, *Helium gas bubble trapped in liquid helium in high magnetic field*, Appl. Phys. Lett., 104, 133511 (2014)

The cooling spacers

Provide electrical insulation, helium vent channels, cooling via recessed Cu strips for part of coil in helium gas bubble:

Coil-facing side

Flange-facing side

32 T Quench scenarios When would/should the quench protection fire?

When operating at \leq 70% of I_c , temperature margins are large (order of 25-40 K)

Event	Scenario	Trigger	Likelihood in 32 T
Quench in LTS Outer (Separate supply & protection)	Need to bring down I HTS coil ~ as fast as LTS coil.	TTL signal from LTS quench detection	Likely
Transient voltage spike (> 1 V, few msec)	Motion in HTS windings	<i>False</i> positive in HTS quench detection	? Observed many in 32 T prototype
Transient voltage spikes (>> msec)	Magnetic transients	<i>False</i> positive in HTS quench detection	Not observed in 32 T prototypes
Sudden permanent normal zone voltage (delamination, load cycling fatigue)	Degradation of HTS conductor below operating current	Proper positive in HTS quench detection	Not observed in 32 T prototypes (Would result in reduced field or coil repair)

Quench heaters can protect coils* even in the case of **zero** normal zone propagation

* W. D. Markiewicz, *Protection of HTS coils in the limit of zero quench propagation velocity*, IEEE Trans. Appl. Supercond., 18, pp. 1333-1336, 2008

Prototype coils test goals

Quench tests	Coil current	Active	Observe	Energy extraction
Quench initiation	0-200 A	Single heater element in one disk (1/35)	Heater efficiency vs. heater power & position	Dump resistor
Quench protection	0-200 A	2-3 heaters in all 10 heater disks (25/35)	NZ resistance growth & current decay vs. heater power	none

Coil 1 prototype schematic

Coil 1 and Coil 2 Quench Heater disks

Heater element

Quench detection at 1 V across coil

Quench initiation example data

- Quench time scales with local I_c
- Below 100 A in coil, need >18 A in heater to quench
- With 20 A heater current, good normal zones down to 60 A
 - Higher heater current possible

Quench protection example data

Both coils in series, Quench heaters only

- Around the 32 T operating current, the coil current can be brought down in 1 second
 - Significant decrease in < 0.5 sec
- Can be accelerated with higher heater current
- Need (expect) to confirm numerically that this scales to "fast enough" for 32 T protection

Prototype coils test goals

Quench tests	Coil current	Active	Observe	Energy extraction
Quench initiation	0-200 A	Single heater element in one disk (1/35)	Heater efficiency vs. heater power & position	Dump resistor
Quench protection	0-200 A	2-3 heaters in all 10 heater disks (25/35)	NZ resistance growth & current decay vs. heater power	none
Stress tests	Coil current	Active	Observe	Comment
Peak stress	≤ 270 A	Design stress reached at 271 / 249 A resp.	All signals for signs of degradation	Avoid quench
Load cycling	≤ 270 A	Cycle from 25% to 100+% of design stress	All signals for signs of degradation	As many cycles as practical
AC-loss*	Coil current	Active	Observe	Comment
Ramp-rate loss	≤ 180 A	Current: steady, ramp ↑↓,steady: ∧ _y	Helium boil-off, coil voltage	Avoid quench

Quench initiation runs (66) (with dump resistor)

Quench protection runs (16)

• Fire most heater elements (10+15) and observe current decay on NZ in coil

Quench protection test runs (2)

- Fire one heater element, let QD observe NZ and then fire quench heaters
 Load cycling in Coil 2 (Outer) prototype
- 20 cycles to design stress: no ill effect observed
- 40 cycles to 110% of design stress: no ill effect observed
- 2 cycles to 120% of design stress: no ill effect observed
- Modules remain superconducting at 270 A (so: quench testing < 74% of I_{c, min})
 Very repeatable hysteresis in central magnetic field
 AC-loss run

What have learned form prototypes?

Quench heaters can create large normal zones anywhere in coils

- Even at low fractions of I_c
- Sufficient to distribute stored energy and decrease coil current (protection)

Coils are robust under

- Load cycling (Coil 2)
- Quench initiation (Both coils)
- Quench protection (Both coils)

No degradation from testing in joints, cross-overs, terminals, windings

- One previously damaged module in Coil 1 unaffected by tests
- Field non-linearity is repeatable

Helium bubble is non-issue

First predictions of numerical code match data

Have a lot of data to benchmark numerical quench code

Difficult but required for upcoming combined HTS-LTS quench analysis

Next prototype run will be in actual LTS outsert: including quench run Plan to start building 32 T in 2015 after full analysis and review

Scheduled operation in 2016

Quench model aspects

- Traditional model of LTS coils
- c_p(T) of materials in HTS windings, including 10 vol% helium
- Our "standard" normalized $I_c(B, T, angle)$ 4.2-40 K
 - measured on "bridges" (narrowed samples, 2012)
 - T_{cs} at midplane & very small field angles >> 40 K: not realistic: corrected
 - I_c scaled to measured I_c (4K, 17T, 18°) for each tape in coil
- RRR and magneto-resistance of Cu
- % contact area between heaters and turns,
- Contact resistance between heaters and turns, turn-turn, pancake-pancake
- Radial, axial and circumferential κ in conductors
- Heat flux from heaters versus time and heater current from simulation
- Magnetic field depends on transport current
- Heat conductance equation with a source term solved
- include index heating, Ohmic heating AC-loss

Firing quench heaters at full coil current

Coil 1 prototype in 15 T background (2013) Firing 40% of available heaters at a modest 16 A No dump resistor

A range of contact resistance and %contact area parameters give reasonable fit for current decay and resistance rise

Firing quench heaters at reduced coil current

Coil 1 prototype in 15 T background Firing 40% of available heaters at 16 A No dump resistor

Model

Measurement: Current decay extends in time, I(t) curves cross over Model: Current decays in same time, I(t) curves shift down

- NZP in three directions (r, z, \u03c6) not applicable as primary input parameters to HTS quench code
 - It is not a simple binary system with a moving normal zone front
 - Instead there is a wide partially superconducting zone with $1\% < I_{Cu} < 99\%$ of /
- Thermal contact resistances, *n*-value , current sharing temperature,

*I*_c(*B*, *T*, *angle*) are important but poorly understood over *some* of the relevant range (> 4.2 K)

- Model parameters can be set to match measured resistance versus time for full current, nominal quench heater power case
 - At lower coil current and heater power the actual coil shows consistently a resistance rise well (> 1 sec) after the heaters are off
 - Numerical model has trouble matching that
 - Is variability of /_c along length a necessary input?
 - Correct modeling of AC-loss & shielding currents?
 - Models should be able to predict/explain shielding current effect on measured parameters like local magnetic field, induced voltages while ramping, helium boil-off

• Introduced the 32 T all-superconducting magnet

- Design features
- History and technology choices
- Long term perspective
- Prototype testing
 - Implication of test results: REBCO coils are robust
 - Mitigation of "helium bubble issue"
 - Quench testing: Quench heaters can protect REBCO tape pancake coils
- REBCO CC Quench modeling
 - Early days: not a simple extension of LTS quench models
 - Benchmarking code against relevant experimental data is yielding results
 - Some physics or material properties not yet fully captured
- LTS+ HTS solenoid operation incl. quench in 2015

The REBCO Superconductor

Negotiated unprecedented 14 specifications

- Balance project needs and commercial viability
- QA program has pushed vendor to improved conductor geometry
 - Width, Cu area within thickness specification

Conductor is steadily getting better

H.W. Weijers on 32 T magnet technology– WAMHTS-2 Kyoto, Nov 13, 2014