The 2014 Kyoto Workshop on HTS Magnet Technology for High Energy Physics (WAMHTS-2) November 13 – 14, 2014 Kyoto, Japan

R&D of fundamental technologies of accelerator magnets using coated conductors

N. Amemiya, Z. Zhang, T. Sano, Y. Sogabe, T. Nakamura (Kyoto Univ.)
T. Ogitsu (KEK), K. Koyanagi, S. Takayama, T. Kurusu (Toshiba)
Y. Mori (KURRI), Y. Iwata, K. Noda (NIRS), M. Yoshimoto (JAEA)

This work was supported by Japan Science and Technology Agency under Strategic Promotion of Innovative Research and Development Program (S-Innovation Program).

Outline

- Overview of the S-Innovation Project on R&D of fundamental technologies of accelerator magnets using coated conductors
- 2. As a topic: study on magnetization of coated conductor and field quality

Overview of the S-Innovation Project

Outline the project

Name of project	Challenge to functional, efficient, and compact accelerator system using high T_c superconductors
Objective	 •R&D of fundamental technologies for accelerator magnets using coated conductors •Constructing and testing prototype magnet
Future applications	 Carbon caner therapy Accelerator-driven subcritical reactor
Participating institutions	Kyoto University, Toshiba, KEK, NIRS (National Institute of Radiological Sciences), JAEA
Period	Stage I: 01/2010 – 03/2012 Stage II: 04/2012 – 03/2016 Stage III: 04/2016 – 03/2019
Funding program	Strategic Promotion of Innovative Research and Development (S-Innovation) Program by JST

N. Amemiya, WAMHTS-2, Nov. 14, 2014

4

3)

NIRS (JAEA

Key issues in R&D

HTS magnet design which is compatible with accelerator design

- Winding technology for negative-bend coils and
 3D shape coils to realize the designed magnets
- Tape magnetization which affects the field quality of magnets

Project overview and key R&D issues at stage I & II

N. Amemiya, WAMHTS-2, Nov. 14, 2014

6

Leading Innovation >>>

NIRS

Magnet design

Spiral sector FFAG accelerator for carbon cancer therapy

Radial magnetic field distribution $B(r) = B_0 (r/R_0)^k$

FFAG accelerator: strong focusing with dc magnet				
Туре	Spiral sector			
Purpose	Carbon cancer therapy			
Particle	C+6			
Energy	40 - 400 MeV/u			
Major radius	4.65 m			
Average orbit radius	3.8 – 5.5 m			
Field index (k value)	5.7			
Integrated field at $r = 5.5$ m	3.98 T·m			
Spiral angle	58.4 deg			
Number of cell	10			
Packing factor	0.5			

Magnet design Spiral sector FFAG accelerator for carbon cancer therapy

- Radial profile is provided by ladder shape coils. $B(r) = B_0(r/R_0)^k$
- Field with spiral angle is provided by coils with negative bend and iron.

Preliminary estimation Weight of iron ~ 60 t; stored energy ~ 2 – 3 MJ; B @ conductor ~ 7 – 8 T

8

N. Amemiya, WAMHTS-2, Nov. 14, 2014

Leading Innovation >>>

NIRS (JAE

Winding technology R&D Examples of test winding

N. Amemiya, WAMHTS-2, Nov. 14, 2014

Model magnet to verify developed technologies

NITRS

• Coils are put in cryostat and cooled by using GM cryo-cooler

10

- Iron is placed at room temperature
- Magnetic field distribution will be measured by using scanning Hall probe and rotating pick-up coils

N. Amemiya, WAMHTS-2, Nov. 14, 2014

Leading Innovation >>>

Study on magnetization of coated conductor and field quality

Content of this part

Magnetic field harmonics measurements in small dipole magnets

Comparisons with 2D electromagnetic field analyses

- □ 3D model for electromagnetic field analyses to evaluate magnetic field harmonics
- □ Perspective: how to manage this issue

Magnetic field harmonics measurements

Tested magnets

	RTC4-F	RTC2-F	RTC4-SP
Number of racetrack coils	4	2	4
Inner / outer width of racetrack	96 mm / 152.8 mm	80 mm / 132 mm	96 mm / 134 mm
Length of straight part	250 mm	250 mm	250 mm
Number of turn	83 turns/coil	76.5 turns/coil	108 turns/coil
Separation between pole	58 mm	52.8 mm	56.2 mm
Coated conductor	FYSC-SC05	FYSC-SC05	SCS4050
Cooling	LN ₂	GM cryocooler	GM cryocooler
Dipole field	0.088 T @50 A		0.5 T @200 A
Conductor field	0.23 T @50 A		1.45 T @200 A

N. Amemiya, WAMHTS-2, Nov. 14, 2014

RCT-4, LN₂, experimental setup, typical data

RCT-4, LN₂, 2D electromagnetic field analyses

RTC4-SP, GM cryocooler, drifts in dipole and sextupole

200 A, 3 hour @20 K

N. Amemiya, WAMHTS-2, Nov. 14, 2014

RTC4-SP, GM cryocooler, temperature dependence

100 A, 3 hour @20 K

100 A, 3 hour @30 K

NIRS

18

TOSHIBA

Leading Innovation >>>

RTC4-SP, GM cryocooler, field (current) dependence

100 A (0.725 T @conductor) 3 hour @20 K

200 A (1.45 T @conductor) 3 hour @20 K

N. Amemiya, WAMHTS-2, Nov. 14, 2014

Drift in 3 hours Dipople: 8.9×10^{-4} Sextupole: 0.72×10^{-4}

NIRŚ

TOSHIBA

Leading Innovation >>>

3D model for electromagnetic field analyses to evaluate magnetic field harmonics

20

Flared-end racetrack coils

21

A cosine-theta dipole magnet for rotating gantry for carbon cancer therapy

Multi-pole coefficients	Analyzed value (with magnetization)	Uniform current	contribution of magnetization
6 pole	100.124	91.504	8.620
10 pole	9.611	7.277	2.334
14 pole	1.064	1.013	0.051

22

Perspective

How to manage this issue?

- 1. We have to accept the existence of the large magnetization in coated conductors.
- 2. A good news: reproducible magnetization
- 3. 3D modeling will enable us the magnetic field design considering the magnetization: at least if the magnetization current is stable and hardly decays, we can design a coil which can generate the required magnetic field, not assuming uniform current but considering the calculated not uniform current distribution with magnetization current.
- 4. Drift in harmonics caused by the decay of magnetization must be a more serious issue.
- 5. Another good news:
 - Not very large drift: at the order of unit, most possibly less than 10 units

24

- Dipole drifting more but higher harmonics drifting less
- Less drifts at lower temperature

Back-up slides

N. Amemiya, WAMHTS-2, Nov. 14, 2014

Dipole magnet RTC4-F comprising race-track coils

Equation for analyses

Consideration of three-dimensional geometry of coated conductors in a coil

$$\nabla \times \left(\frac{1}{\sigma} \nabla \times \boldsymbol{n} T\right) \cdot \boldsymbol{n} + \frac{\partial}{\partial t} \left(\frac{\mu_0 t_s}{4\pi} \int_{S'} \frac{(\nabla \times \boldsymbol{n}' T') \times \boldsymbol{r} \cdot \boldsymbol{n}}{r^3} dS' + \boldsymbol{B}_{ext} \cdot \boldsymbol{n}\right) = 0$$

r : vector from the source point where the current resides to the field point where the potential is calculated.

Superconductor layers are mathematically twodimensional (no thickness), but follow the curved geometry of coated conductors in a coil.

The three-dimensional geometry of the coil is retained in the modeling, while region of analysis is mathematically two-dimensional.

Source point on other strand

