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Qutline

= \Why use HTS?
* Mostly answered in the many talks given here
« Beam line magnets have different requirements than detector magnets

= Are HTS materials radiation resistant?
= \What about insulation?
= Summary
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LHC Upgrade Radiation
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Accelerator Beam Line Magnet Requirements

» High current density at high magnetic field

MAaAIN TARGETS OF EUCARD2 DIPOLE AND CONDUCTOR
= Cable

Parameter Value Note
= Radiation tolerant

Jp strand 600 A/mm” Final target (any field direction)
. |@2EIT,4.2K |
u Operatlon at4.2 K Ji cable 400 A/mm2 Minimum initial target. Final
@20T,4.2K one should be > 500 A/mm”
Cable size 10-12 mm width Bare cable before insulation,
~ 1 mm thickness thickness at o > 50 MPa

= — o

Fig. 5: Roebel cable concept (left); a first 15 tape Roebel cable manufactured
by KIT for preliminary EuCARD?2 investigation (right).

Rossi, et al., ASC-14 presentation
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Radiation Spectra

Beam line magnets

Track length fraction [%] Spectrometer magnets:
photons 88 90% neutrons
electrons/positrons 7
neutrons 4
pions 0.45
protons 0.15

Flukiger, RESMM'13
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FRIB - Facility for Rare Isotope Beams
at Michigan State University

= Rare isotope production

via in-flight technique
Wlth prlmary beams up IB Reaccelerated Beam Area
to 400 kw, 200 MeV/u smn=

uranium
Fast Beam Area s nc ﬁ
= Fast, sto < ?

’ p p e d an d ﬁé“’if Space for future expansion
reaccelerated beam "% B | 57 caents program
capability { i N

Fragment Reacce lerator
. Separator
= Upgrade options [ TR
" Energy 400 M eV/u ?rodutction } T T zoollfee' T T I
for u ran I u m s?,;gt:ms Beam Delivery System L Folding Segment 2
= [SOL production — = ——
. - Linac Segment 1 Front End
Multi-user capability —

Linac Segment 2

Folding Segment 1 ,—‘
World-leading next-generation rare isotope beam facility
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Overview Experimental Systems
Fragment Separator

= Scope
* In-flight separation of rare isotopes with high acceptance and high resolution
» Leverage rare isotope production at 400 kW beam power
» Provide purest-possible rare isotopes beam to maximize science reach

Preseparator (Stage 1) Stages 2 + 3

Use existing A1900 magnets

Target Facility
Hotcell

Momentum
— Compression
Wedge
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Fragment Separator Mechanical Design

= All components in high radiation area in vacuum vessels ~200 t)
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Detailed Magnet Models for Simulations
Basis for Reliable Prediction of Radiation Effects

* Power deposition in magnet structures drives the detailed design of
magnet components, non-conventional utilities, cooling water loops,
cryogenic requirements

= Liquid helium capacity fixed. Can’t change the plant size.

Wedge vacuum vessel
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magnet supports________ _
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Beam dump 2
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Radiation Transport
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Calculations of Radiation Power Deposition
Drives Choice of Tehnology: HTS or LTS

* Power deposition drives detailed
vacuum vessel and external
shielding design
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FRIB Warm Iron Quad (Section)

FRIB and BNL designs similar

¥ Connection box

Link

Yoke key

Quad Call

Support
Multipole coils
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COMET (JPARC)

Detector
Spectrometer _ccont | s Solenoid

pion production
target

* 60 W nuclear heating

Muon Transport
Solenoid

HTS would reduce this by
A factor of ~10

Pion Capture Solenoid
COMET Superconducting Magnet System

M. Yoshida, RESMM’13 and IPAC’10
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RISP (Korea)

Only for Coils
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RISP HTS Quadrupoles

M. Kim, RESMM’14

GHe cooling channel
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MuZ2e (Fermilab)

LTS —> HTS would reduce refrigeration and shielding requirements

Production Transport Detector
Solenoid . Solenoid Solenoid 10T

Production 2.0T Stopping :
Target Collimators Target Tracker  Calorimeter

M. Lamm, RESMM13
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Radiation Resistance MgB?2
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Putti, Vaglio, Rowell, SST, 043001(2008)

Michigan State University
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M. Eisterer, RESMM14

YBCO much better at low temperatures. Looks more like Nb;Sn.
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Radiation Damage

= Significant body of work on radiation damage to YBCO
By people at this workshop, among others
« A summary is that it has sufficient radiation tolerance to be useful

* MgB, also has a body of work
 Again, looks OK at lower temperatures

» BSCCO less studied (zeller, Adv Cryo Eng 54 416(2010))
» 2223 looks to be similar to Nb,Sn
e Likely 2212 is the same

* Has the necessary radiation tolerance
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Radiation Damage to Other Things

= Except for stainless steel insulation for YBCO colls (Gupta, et al,
ASC14 and references within), other materials require insulation and/or
potting

= Cyanate esters —

* good radiation resistance even when mixed with epoxy (A. Idesaki, et al., RESMM'13)
* MoOre: r. prokopec, et al., Adv Cryo Eng 54 182(2008)

TABLE 2. Ultimate tensile strength (UTS) measured at 77 K before and after irradiation to fast neutron
fluences up to 2x10% m? (E>0.1 MeV)

Insulation system T1 (100) T2 (40) T8 (30) T10 (20)
UTS 90° (MPa) UTS 90° (MPa) UTS 90° (MPa) UTS 90° (MPa)
unirr 250 + 19 313 + 18 269 + 19 265 + 16
1x10% m™ 250 + 22 296 + 10 274 + 6 243 + 12
2x10% m™ 228 + 13 260 + 7 218+ 8

Note: This is about the same sensitivity as the superconductor

#  Michigan State University Zeller, Slide 21
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Loose Ends

* Protection issues
» Copper stabilizer — reduced heat transfer — HTS less of a concern at
elevated temperatures (already worse)
 Parallel wound secondary circuit:
» High voltages for rapid energy transfer

» Require insulation for > 1 kV for large systems
Sol-gel only good for 200 V (3. Lu, NHMFL research report)

* Insulation for quench heaters
 Sensitive electronics close to magnets in high-radiation areas?

= MgB, for detector magnets
« Helium plants produce cold gas at 30-50 K
» Heat exchanger needed, lose efficiency
» Radiation damage higher at higher temperatures
« Some magnets very large. How to wind and react?
»CICC?
» Cable?
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Summary

* HTS has the necessary radiation resistance

* HTS in accelerator magnets at 4 K support going to higher fields and
higher beam energy/luminosity if cabling and fabrication issues solved
« Radiation resistance better at low temperatures

= Detector magnets can reduce operational costs
* Better efficiency
* Need lower material costs
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