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Why use HTS? 
• Mostly answered in the many talks given here 

• Beam line magnets have different requirements than detector magnets 

Are HTS materials radiation resistant? 

What about insulation? 

Summary 
 

Outline 
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LHC Upgrade Radiation 
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High current density at high magnetic field 

Cable 

Radiation tolerant 

Operation at 4.2 K 

Accelerator Beam Line Magnet Requirements 
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Rossi, et al., ASC-14 presentation 



Radiation Spectra 
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Flükiger, RESMM’13 

Beam line magnets 

Spectrometer magnets: 

90% neutrons 



FRIB - Facility for Rare Isotope Beams 
at Michigan State University 
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World-leading next-generation rare isotope beam facility 

 Rare isotope production 
via in-flight technique 
with primary beams up 
to 400 kW, 200 MeV/u 
uranium 

 Fast, stopped and 
reaccelerated beam 
capability 

 Upgrade options 

 Energy 400 MeV/u 

for uranium 

 ISOL production – 

Multi-user capability 



 Scope 
• In-flight separation of rare isotopes with high acceptance and high resolution 

» Leverage rare isotope production at 400 kW beam power 

» Provide purest-possible rare isotopes beam to maximize science reach 

Overview Experimental Systems  
Fragment Separator 
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All components in high radiation area in vacuum vessels ~200 t)  

Fragment Separator Mechanical Design  
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Power deposition in magnet structures drives the detailed design of 
magnet components, non-conventional utilities, cooling water loops, 
cryogenic requirements 

 Liquid helium capacity fixed. Can’t change the plant size. 

Detailed Magnet Models for Simulations 
Basis for Reliable Prediction of Radiation Effects 
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Radiation Transport 
 

Heat map of zone close to Target Hot Cell Dose Rates 
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Power deposition drives detailed  
vacuum vessel and external  
shielding design 

Calculations of Radiation Power Deposition 
Drives Choice of Tehnology: HTS or LTS 
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Radiation power  

deposition from  
48Ca beam at  

549 MeV/u  

(upgrade energy) 

 



FRIB Warm Iron Quad (Section) 
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Connection box 

Link 

 

Yoke key 

 

Quad Coil 

 

 

Support 

Multipole coils 

FRIB and BNL designs similar 



COMET (JPARC) 
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Pion Capture Solenoid 

Muon Transport 
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COMET Superconducting Magnet System 

M. Yoshida, RESMM’13 and IPAC’10 

HTS would reduce this by 

A factor of ~10  



RISP (Korea) 
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M. Kim, RESMM’14 

Note heat input into coils 

pushing LTS quench limits 



RISP HTS Quadrupoles 
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M. Kim, RESMM’14 



Mu2e (Fermilab) 
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M. Lamm, RESMM13 

LTS –> HTS would reduce refrigeration and shielding requirements 



Radiation Resistance MgB2 
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Putti, Vaglio, Rowell, SST, 043001(2008)  

Concern: 

High neutron absorption 

 cross section for 10B. 
10B is ~20% of natural B 



YBCO 
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Nb3Sn YBCO 

YBCO much better at low temperatures. Looks more like Nb3Sn. 

M. Eisterer, RESMM14 



Significant body of work on radiation damage to YBCO 
• By people at this workshop, among others 

• A summary is that it has sufficient radiation tolerance to be useful 

MgB2 also has a body of work 
• Again, looks OK at lower temperatures 

BSCCO less studied (Zeller, Adv Cryo Eng 54 416(2010)) 
• 2223 looks to be similar to Nb3Sn 

• Likely 2212 is the same 

Has the necessary radiation tolerance 

Radiation Damage 
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Except for stainless steel insulation for YBCO coils (Gupta, et al, 
ASC14 and references within), other materials require insulation and/or 
potting 

Cyanate esters –  
• good radiation resistance even when mixed with epoxy (A. Idesaki, et al., RESMM’13) 

• More: R. Prokopec, et al., Adv Cryo Eng 54 182(2008) 

Radiation Damage to Other Things 
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TABLE 2. Ultimate tensile strength (UTS) measured at 77 K before and after irradiation to fast neutron 

fluences up to 2x1022 m-2 (E>0.1 MeV) 

Insulation system T1 (100) T2 (40) T8 (30) T10 (20) 
 UTS 90° (MPa) UTS 90° (MPa) UTS 90° (MPa) UTS 90° (MPa) 

unirr. 250 ± 19 313 ± 18 269 ± 19 265 ± 16 
1x10

22 
m

-2 250 ± 22 296 ± 10 274 ± 6 243 ± 12 
  2x1022  m-2  228 ± 13  260 ± 7  218 ± 8   

Note: This is about the same sensitivity as the superconductor 



Protection issues 
• Copper stabilizer – reduced heat transfer – HTS less of a concern at 

elevated temperatures (already worse) 

• Parallel wound secondary circuit: 
» High voltages for rapid energy transfer 

» Require insulation for > 1 kV for large systems 
• Sol-gel only good for 200 V (J. Lu, NHMFL research report) 

• Insulation for quench heaters 

• Sensitive electronics close to magnets in high-radiation areas? 

MgB2 for detector magnets 
• Helium plants produce cold gas at 30-50 K 

» Heat exchanger needed, lose efficiency 

» Radiation damage higher at higher temperatures 

• Some magnets very large. How to wind and react? 
» CICC? 

» Cable? 

 
 

Loose Ends 
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HTS has the necessary radiation resistance 

HTS in accelerator magnets at 4 K support going to higher fields and 
higher beam energy/luminosity if cabling and fabrication issues solved 
• Radiation resistance better at low temperatures 

Detector magnets can reduce operational costs 
• Better efficiency 

• Need lower material costs 

Summary 
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