

HTS Magnets in High-Radiation Areas

Al Zeller

*Work supported by US DOE-SC under Cooperative Agreement DE-SC0000661

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Acknowledgements

BNL

- Ramesh Gupta, George Greene
- TU Vienna
 - Harald Weber, Thomas Baumgartner, Michael Eisterer

FRIB

• Reg Ronningen, Shailendra Chouhan, Earle Burkhardt, Honghai Song

Outline

• Why use HTS?

- Mostly answered in the many talks given here
- Beam line magnets have different requirements than detector magnets
- Are HTS materials radiation resistant?
- What about insulation?
- Summary

LHC Upgrade Radiation

Accelerator Beam Line Magnet Requirements

 High current density at high magnetic field MAIN TARGETS OF EUCARD2 DIPOLE AND CONDUCTOR

Cable

Radiation tolerant

Operation at 4.2 K

Parameter	Value	Note
J_E strand	600 A/mm ²	Final target (any field direction)
$J_{\rm E}$ cable	@20T,4.2K 400 A/mm2 @20T,4.2K	Minimum initial target. Final one should be $> 500 \text{ A/mm}^2$
Cable size	10-12 mm width ~ 1 mm thickness	Bare cable before insulation, thickness at $\sigma > 50$ MPa

Fig. 5: Roebel cable concept (left); a first 15 tape Roebel cable manufactured by KIT for preliminary EuCARD2 investigation (right).

Rossi, et al., ASC-14 presentation

Radiation Spectra

Beam line magnets

Track length fraction [%]				
photons	88			
electrons/positrons	7			
neutrons	4			
pions	0.45			
protons	0.15			

Flükiger, RESMM'13

Spectrometer magnets: 90% neutrons

FRIB - Facility for Rare Isotope Beams at Michigan State University

- Rare isotope production via in-flight technique with primary beams up to 400 kW, 200 MeV/u uranium
- Fast, stopped and reaccelerated beam capability
- Upgrade options
 - Energy 400 MeV/u for uranium
 - ISOL production Multi-user capability

World-leading next-generation rare isotope beam facility

Overview Experimental Systems Fragment Separator

Scope

- In-flight separation of rare isotopes with high acceptance and high resolution
 - » Leverage rare isotope production at 400 kW beam power
 - » Provide purest-possible rare isotopes beam to maximize science reach

Fragment Separator Mechanical Design

• All components in high radiation area in vacuum vessels ~200 t)

Michigan State University

Detailed Magnet Models for Simulations Basis for Reliable Prediction of Radiation Effects

- Power deposition in magnet structures drives the detailed design of magnet components, non-conventional utilities, cooling water loops, cryogenic requirements
- Liquid helium capacity fixed. Can't change the plant size.

Radiation Transport

Hot Cell Dose Rates

Heat map of zone close to Target

Calculations of Radiation Power Deposition Drives Choice of Tehnology: HTS or LTS

Power Deposition (W/cc)

Length (cm)

 Power deposition drives detailed vacuum vessel and external shielding design

°o 6 6 6 ю ю 6 300 200 Radiation power Height (cm) deposition from 100 ⁴⁸Ca beam at 0 549 MeV/u (upgrade energy) -100 400 200 0

FRIB Warm Iron Quad (Section)

COMET (JPARC)

M. Yoshida, RESMM'13 and IPAC'10

RISP (Korea)

RISP HTS Quadrupoles

M. Kim, RESMM'14

Mu2e (Fermilab)

LTS –> HTS would reduce refrigeration and shielding requirements

M. Lamm, RESMM13

Radiation Resistance MgB2

Concern:

High neutron absorption cross section for ¹⁰B. ¹⁰B is ~20% of natural B

Putti, Vaglio, Rowell, SST, 043001(2008)

YBCO

YBCO much better at low temperatures. Looks more like Nb₃Sn.

Radiation Damage

- Significant body of work on radiation damage to YBCO
 - By people at this workshop, among others
 - A summary is that it has sufficient radiation tolerance to be useful
- MgB₂ also has a body of work
 - Again, looks OK at lower temperatures
- BSCCO less studied (Zeller, Adv Cryo Eng 54 416(2010))
 - 2223 looks to be similar to Nb₃Sn
 - Likely 2212 is the same
- Has the necessary radiation tolerance

Radiation Damage to Other Things

- Except for stainless steel insulation for YBCO coils (Gupta, et al, ASC14 and references within), other materials require insulation and/or potting
- Cyanate esters
 - good radiation resistance even when mixed with epoxy (A. Idesaki, et al., RESMM'13)
 - More: R. Prokopec, et al., Adv Cryo Eng 54 182(2008)

TABLE 2. Ultimate tensile strength (UTS) measured at 77 K before and after irradiation to fast neutron fluences up to $2x10^{22}$ m⁻² (E>0.1 MeV)

Insulation system	m T1 (100)	T2 (40)	T8 (30)	T10 (20)
	UTS 90° (MPa)	UTS 90° (MPa)	UTS 90° (MPa)	UTS 90° (MPa)
unirr	250 ± 19	313 ± 18	269 ± 19	265 ± 16
$1 \times 10^{22} \text{ m}^{-2}$	250 ± 22	296 ± 10	274 ± 6	243 ± 12
$2 \times 10^{22} \text{ m}^{-2}$	228 ± 13		260 ± 7	218 ± 8

Note: This is about the same sensitivity as the superconductor

Loose Ends

Protection issues

- Copper stabilizer reduced heat transfer HTS less of a concern at elevated temperatures (already worse)
- Parallel wound secondary circuit:
 - » High voltages for rapid energy transfer
 - » Require insulation for > 1 kV for large systems
 - Sol-gel only good for 200 V (J. Lu, NHMFL research report)
- Insulation for quench heaters
- Sensitive electronics close to magnets in high-radiation areas?

• MgB₂ for detector magnets

- Helium plants produce cold gas at 30-50 K
 » Heat exchanger needed, lose efficiency
 » Radiation damage higher at higher temperatures
- Some magnets very large. How to wind and react? »CICC?
 - » Cable?

Summary

- HTS has the necessary radiation resistance
- HTS in accelerator magnets at 4 K support going to higher fields and higher beam energy/luminosity if cabling and fabrication issues solved
 - Radiation resistance better at low temperatures
- Detector magnets can reduce operational costs
 - Better efficiency
 - Need lower material costs

