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Big 2212 steps in 2004-2014

VH FSMC (ARRA, $4 million, 2009-2011), and BSCCo

® Industry supplied over 7 km of strand

# Good Rutherford cables were made

@ Cable-wound racetracks achieving 75% of short sample

#® Small solenoids operating at stresses of >100 MPa in fieldsup to 32 T
were made.

# Melt processing/wire design/J_relationships better

understood
# Removing gas bubbles leads to high J..
@ Leakage caused by creep rupture of silver driven by internal gases

& Better insulation technology available
Breakthrough inJ_—20T (4.2 K) J; exceeds 700 A/mm?

# New paradigm: overpressure processing — heat treat conductor in a high
pressure external gas

# used to be 300 A/mm?2in short commercial wire

#® used to be 200 A/mm?Z in coils
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Deploying OP 2212 for applications and some
driving questions

@ Coil fabrication common issues
& What insulation and structural materials to use?
@ How to heat treat a coil with +/-2Ccontrol?

Overpressure melt processing coil engineering
@ Can the success of overpressure processing be replicated in coils?

& Will OP work well with cables?
@ How easy is overpressure melt processing @100 bar with +/-2C

control?
il ~_ 10bar OP;J,=252 A/mm?
| at 33.8 T (coil quenched).
Add 2.6 Tto 31.2T
background.

Larbalestier et al.,
(Nature Materials, 2014)
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How does OP work out on cables? — Still effective

High strength
Bi-2212 6+1 cable

/_

Bi-2212 wire
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Shen, Jiang et al., to be submitted to
SuST and to appear in ArXiV

Average ] (strand in
10 bar OP cable )=
415 A/mm?

Though two 100 bar OP
attempts produced
J.=500 A/mm?




Prototype OP solenoids yielded I, that is 2-2.6 times
that of 1 bar solenoids

® Muons Inc — Fermilab, U.S. DOE-OHEP STTR project

@® OP coil I(5T)=250-320 A vs. typical 120%=40 A in 1 bar coils (0.8 mm
strand)
® 400 A for the best witness sample (Jz=900 A/mm?)

FNAL 100 bar OP system
Hot zone — 16 cm x 50 mm diameter
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Good superconducting transition seen, despite that coils

were reacted in a temperature gradient; insulation is good
as well

Inner layer I, = Outer layer |,

No electrical shorts — nGimat TiO, insulation works well.
Non-uniform Coil I, — coil reacted in a temperature gradient
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Colil survived >110 quenches and a hoop stress
of 97 Mpa, and comments about OP

No degradation

@ after 110 quenches (initiated by aheater)at7T,9T,and 12T
& Maximum temperature reached = 250 K.

#® Hoop stress reached 97 Mpa at 14T

OP@100 bar with temperature control in +/- 2C is not easy

@ High thermal conductivity of pressured gas messed up temperature
homogeneity.

#® Not-so-easy temperature calibration
Sumitomo Bi-2223 300 bar OP furnace: +/- 1C in a sample space
of 1 m diameter x 1.2 m height

Can we reduce the OP pressure to 30-50 bar?



Model of OP: Under external pressure, Ag creeps inward,

producing denser Bi-2212 core and
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J (42K, 5T), Amm?

Model predicts that OP requirement decreases
linearly with decreasing internal gas pressure
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Challenges to take on: decreasing the OP
requirement from 100 bar to 30-50 bar

Partial pressure (Torr)

The model predicts that it is feasible.

Mass spectroscopy indicates that wire releases plenty of gases
while being heated up

Need collaboration between powder manufacturer, wire
manufacturer, and materials scientists.
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Driving guestions for the next section

Quench detection and protection of Bi-2212 magnets
® What are quench degradation limits and mechanisms?

@ How high the hot spot temperature needs to be for the
resistive voltage of a normal zone to be detectable?

@ At what speed a normal zone propagates and how does this
speed depend on operating conditions and conductor
processing?

® How can we achieve a quench protection with a time constant
<500 ms.



A large pool of wires, including OP wires, shows
a consistent 1 /I_-T__ behavior
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The observed quench degradation is strain driven - first
evidence: irreversible and reversible degradation

behavior |
Hot zone Ag/Bi2212 «  Wires want to expand but couldn’t.
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300 K seems safe — even for coils under good
electromagnetic stresses

Coil 2 at 7 T, stress=60 MPa
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A 1 bar processed coil and heater-induced quench experiments

6-layer, 245 turns, epoxy impregnated
Bi-2212 solenoid
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MQE determined from heater-induced quench
experiments: a master plot
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T=4.2 K, B=7 T, 1,=100 A — Quench propagation and
temperature rise at /=88 A/mm?
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T=4.2 K, B=7 T, 1 ,=400 A — Quench propagation and
temperature rise at /=354 A/mm?
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NZPV determined from heater-induced quench

experiments: a master plot
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Quench detection — Terminal voltage that coil sustains
without a quench varies with transport current

Should a dynamic quench detection threshold used?

1=100 A, V=45 mV. R _,=0.45 m-ohm
=100 A Joule heating = 24.9)
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Hot spot temperature v.s. resistivity voltage across normal zone:
quench detection is demanding; V,=50-200 mV is preferred

? H"Nzt“-s ™ e Note: Temperature from voltage measurement, not from TCs.
st TCs tend to underestimate T, when dT/dt>10 K/s.
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Critical tempeature T _(B) [K]

When B> 5 T, NZPV of 2212 is still in cm/s — but it should
be in tens of cm/s or even m/s considering its small

temperature margin
* T.(2212) drops to 25 K when

sodi o B>S5T
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Summary

Overpressure processing, though not easy, is fundamentally
sound

#® Good OP cables and coils made and tested

Found a consistent quench degradation behavior in a large
spool of wires

Deeper understanding of quenches
® Measure MQE vs. J and B, and NZPV vs. J and B
@® First careful measurement of T, v.s. V,

#® Strong effects of n-values on quench propagation and detection
revealed

Project pull:

@ 28-30T all SC solenoid — NHMFL NMR and DOE SIBR/STTR
@ The world’s first cosine-theta Bi-2212 dipole

#® The world’s first canted-cosine-theta Bi-2212 dipole
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Slow propagation of normal zones in Bi-
2212 magnets: Effects of conductor E-J
characteristics

SC, n=100

SC, n=5

Electric field [V/cm]
S

le 151 21 Curren
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The joule power model that describes Nb-Ti and Nb;Sn well is not
suitable for 2212 because 2212 has a small n-value (5-15 in fields)

Current in Ag
SC, n=100

g s .
0 SC, n=5

5
T » % Ag
cs / Tc T E slo’pe=pIAm
:

Currentin 2212

Joule heating —_—
T\ I, Current
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New nonlinear current-transfer model:
Smaller N-value -> more difficult to drive formation
of normal zones

* Low N-values, in combination with small RRR, increase T_.
— More pronounced at high |_/1_and at high magnetic fields.
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N-values W: conductor stability A\, normal zone
propagation speed W

« Low NZPVin 2212 at B >5 T is largely caused by low n-values.
* |ncrease the N-value -> In-field NZPV in M/S (though sacrificing some stability)
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