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Big 2212 steps in 2004-2014 

Fermilab 

VHFSMC (ARRA, $4 million, 2009-2011), and BSCCo  
Industry supplied over 7 km of strand 

Good Rutherford cables were made 

Cable-wound racetracks achieving 75% of short sample 

Small solenoids operating at stresses of >100 MPa in fields up to 32 T 
were made. 

Melt processing/wire design/Jc relationships better 
understood 

Removing gas bubbles leads to high Jc. 

Leakage caused by creep rupture of silver driven by internal gases 

Better insulation technology available 

Breakthrough in Jc – 20 T (4.2 K) JE exceeds 700 A/mm2 

New paradigm: overpressure processing – heat treat conductor in a high 
pressure external gas  

used to be 300 A/mm2 in short commercial wire  

used to be 200 A/mm2 in coils  
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Deploying OP 2212 for applications and some 

driving questions 

Coil fabrication common issues 
What insulation and structural materials to use? 

How to heat treat a coil with +/-2Ccontrol? 

Overpressure melt processing coil engineering 
Can the success of overpressure processing be replicated in coils? 

Will OP work well with cables? 

How easy is overpressure melt processing @100 bar with +/-2C 
control? 

 

 

Fermilab 

10 bar OP; JE=252 A/mm2  
at 33.8 T (coil quenched).  
Add 2.6 T to 31.2 T 
background. 

Larbalestier et al.,  
(Nature Materials, 2014)  
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How does OP work out on cables? – Still effective  

Average J
e
(strand in 

10 bar OP cable )= 

415 A/mm
2
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Larbalesti
er et al.,  
(Nature 
Materials
, 2014)  

Though two 100 bar OP  
attempts produced  
Je=500 A/mm2   

Shen, Jiang et al.,  to be submitted to 
SuST  and to appear in ArXiV Single-strand data 
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Prototype OP solenoids yielded Ic that is 2-2.6 times 

that of 1 bar solenoids  

Fermilab 

Muons Inc – Fermilab, U.S. DOE-OHEP STTR project 

OP coil Ic(5 T)=250-320 A vs. typical 120±40 A in 1 bar coils (0.8 mm 

strand) 

400 A for the best witness sample (JE=900 A/mm2) 

FNAL 100 bar OP system 
Hot zone – 16 cm x 50 mm diameter  

OP 2-layer coil; conductor  
length=11 m; nGimat insulation 
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Good superconducting transition seen, despite that coils 

were reacted in a temperature gradient； insulation is good 

as well 

Fermilab 

Inner layer Ic ≈ Outer layer Ic 

No electrical shorts – nGimat TiO2 insulation works well. 

Non-uniform Coil Ic – coil reacted in a temperature gradient 

OP 2-layer coil; conductor  
length=11 m;  
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Coil survived >110 quenches and a hoop stress 

of 97 Mpa, and comments about OP  

Fermilab 

No degradation  

after 110 quenches (initiated by a heater) at 7 T, 9 T, and 12 T 

Maximum temperature reached ＝ 250 K.  

Hoop stress reached 97 Mpa at 14 T 

OP@100 bar with temperature control in +/- 2C is not easy 

High thermal conductivity of pressured gas messed up temperature 
homogeneity. 

Not-so-easy temperature calibration  

Sumitomo Bi-2223 300 bar OP furnace: +/- 1C in a sample space 
of 1 m diameter x 1.2 m height 

Can we reduce the OP pressure to 30-50 bar? 
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Model of OP: Under external pressure, Ag creeps inward, 

producing denser Bi-2212 core and raising Jc 
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Model predicts that OP requirement decreases 

linearly with decreasing internal gas pressure 
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Challenges to take on: decreasing the OP 

requirement from 100 bar to 30-50 bar 

The model predicts that it is feasible. 

Mass spectroscopy indicates that wire releases plenty of gases 
while being heated up 

Need collaboration between powder manufacturer, wire 
manufacturer, and materials scientists. 
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Driving questions for the next section 

Fermilab 

Quench detection and protection of Bi-2212 magnets 

What are quench degradation limits and mechanisms? 

How high the hot spot temperature needs to be for the 
resistive voltage of a normal zone to be detectable? 

At what speed a normal zone propagates and how does this 
speed depend on operating conditions and conductor 
processing? 

How can we achieve a quench protection with a time constant 
<500 ms. 
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A large pool of wires, including OP wires, shows 
a consistent Ic/Ico-Tmax behavior 

OST  0.8 mm, 37x18 
Ic(s.f)=450A 
Bench marker 
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The observed quench degradation is strain driven - first 

evidence: irreversible and reversible degradation 

behavior 
• Wires want to expand but couldn’t. 

– Silver buckles under compressive  

      stress. 

• Silver and 2212 expand differently.  G10  
at 4.2 K 

Cu 
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300 K seems safe – even for coils under good 

electromagnetic stresses 
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A 1 bar processed coil and heater-induced quench experiments 
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MQE determined from heater-induced quench 
experiments: a master plot 
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T=4.2 K, B=7 T, Io=100 A – Quench propagation and 
temperature rise at J=88 A/mm2 
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T=4.2 K, B=7 T, Io=400 A – Quench propagation and 
temperature rise at J=354 A/mm2 
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NZPV determined from heater-induced quench 
experiments: a master plot 
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Quench detection – Terminal voltage that coil sustains 
without a quench varies with transport current 
 

Coil terminal voltage  

during recovery cases 
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• 100 A-> 400 A, quench detection 
becomes more difficult. 

• Beyond 400 A, quench detection should 
becomes easier (prediction) 

• Not wise to increase Vdetection beyond 1 
V 

 

 

Temperatures derived from voltages 
across the 1.5 cm hot zone: 

Hot spot temperature v.s. resistivity voltage across normal zone: 
quench detection is demanding; Vd=50-200 mV is preferred 

4.2 K, 7 T, coil experiment 

Note: Temperature from voltage measurement, not from TCs.  
TCs tend to underestimate Tmax when dT/dt>10 K/s. 
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• Tc (2212) drops to 25 K when 
B>5 T 

– B=0: typical HTS, NZPV in 
cm/s 

– B>5 T: somewhat LTS, NZPV 
should be in m/s but actually 
in cm/s 

• A big reason is low n-value in 
Bi-2212 

– Typical n-value for 1 bar coils: 
5-12 

– Typical n-value for OP coils: 12-
20 

  

When B> 5 T, NZPV of 2212 is still in cm/s – but it should 
be in tens of cm/s or even m/s considering its small 
temperature margin 

Larbalestier et al, Nature Materials, 2014 
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Summary 

Fermilab 

Overpressure processing, though not easy, is fundamentally 
sound 

Good OP cables and coils made and tested 

Found a consistent quench degradation behavior in a large 
spool of wires 

Deeper understanding of quenches 
Measure MQE vs. J and B, and NZPV vs. J and B 

First careful measurement of Tmax v.s. Vd 

Strong effects of n-values on quench propagation and detection 
revealed  

Project pull: 
28-30 T all SC solenoid – NHMFL NMR and DOE SIBR/STTR 

The world’s first cosine-theta Bi-2212 dipole 

The world’s first canted-cosine-theta Bi-2212 dipole 

 

 



Slow propagation of normal zones in Bi-
2212 magnets: Effects of conductor E-J 
characteristics 
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The joule power model that describes Nb-Ti and Nb3Sn well is not 
suitable for 2212 because 2212 has a small n-value (5-15 in fields)  
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New nonlinear current-transfer model: 
Smaller N-value -> more difficult to drive formation 

of normal zones 

• Low N-values, in combination with small RRR, increase Tcs. 

– More pronounced at high Io/Ic and at high magnetic fields. 



N-values : conductor stability , normal zone 
propagation speed  
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• Low NZPV in 2212 at B > 5 T is largely caused by low n-values. 

• Increase the N-value -> In-field NZPV in m/s (though sacrificing some stability) 
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