

Operated by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Bi-2212 high-field magnet technology at Fermilab: Prototype overpressure processing coil fabrication and quench protection studies

Tengming Shen, Fermilab, November 14, 2014

With inputs from Pei Li (Fermilab), Liyang Ye (Fermilab & NCSU), Gene Flanagan (Muons Inc.), Lance Cooley (Fermilab), members of BSCCo, and collaborations with Justin Schwartz (NCSU).

Work supported by U.S. DOE-OHEP through early career program, SBIR-STTR program and GARD program

Big 2212 steps in 2004-2014

WHFSMC (ARRA, \$4 million, 2009-2011), and BSCCo

- Industry supplied over 7 km of strand
- Good Rutherford cables were made
- Cable-wound racetracks achieving 75% of short sample
- Small solenoids operating at stresses of >100 MPa in fields up to 32 T were made.
- Melt processing/wire design/J_c relationships better understood
 - Removing gas bubbles leads to high J_c.
 - Leakage caused by creep rupture of silver driven by internal gases
- Better insulation technology available
- Breakthrough in J_c 20 T (4.2 K) J_E exceeds 700 A/mm²
 - New paradigm: overpressure processing heat treat conductor in a high pressure external gas
 - used to be 300 A/mm² in short commercial wire
 - used to be 200 A/mm² in coils

Deploying OP 2212 for applications and some driving questions

- Coil fabrication common issues
 - What insulation and structural materials to use?
 - How to heat treat a coil with +/-2Ccontrol?
- Overpressure melt processing coil engineering
 - Solution Can the success of overpressure processing be replicated in coils?
 - Will OP work well with cables?
 - How easy is overpressure melt processing @100 bar with +/-2C control?

10 bar OP; J_E=252 A/mm² at 33.8 T (coil quenched). Add 2.6 T to 31.2 T background.

Larbalestier et al., (Nature Materials, 2014)

How does OP work out on cables? – Still effective

Shen, Jiang et al., to be submitted to SuST and to appear in ArXiV

Average J_e(strand in 10 bar OP cable)= 415 A/mm²

Though two 100 bar OP attempts produced J_e=500 A/mm²

Prototype OP solenoids yielded I_c that is 2-2.6 times that of 1 bar solenoids

- Muons Inc Fermilab, U.S. DOE-OHEP STTR project
- OP coil $I_c(5 T)=250-320 A vs. typical 120 \pm 40 A in 1 bar coils (0.8 mm strand)$
 - 400 A for the best witness sample (J_E=900 A/mm²)

OP 2-layer coil; conductor length=11 m; nGimat insulation

Good superconducting transition seen, despite that coils were reacted in a temperature gradient; insulation is good as well

- Solution Inner layer $I_c \approx \text{Outer layer } I_c$
- No electrical shorts nGimat TiO₂ insulation works well.
- Son-uniform Coil I_c coil reacted in a temperature gradient

Coil survived >110 quenches and a hoop stress of 97 Mpa, and comments about OP

No degradation

Initiated by a heater) at 7 T, 9 T, and 12 T
Maximum temperature reached = 250 K.

Hoop stress reached 97 Mpa at 14 T

OP@100 bar with temperature control in +/- 2C is not easy

- Weigh thermal conductivity of pressured gas messed up temperature homogeneity.
- Not-so-easy temperature calibration
- Sumitomo Bi-2223 300 bar OP furnace: +/- 1C in a sample space of 1 m diameter x 1.2 m height
- Can we reduce the OP pressure to 30-50 bar?

Model of OP: Under external pressure, Ag creeps inward, producing denser Bi-2212 core and raising J_c

(courtesy of OST)

Model predicts that OP requirement decreases linearly with decreasing internal gas pressure

P_i=8 bar now J_c goes up with the filament density.

Challenges to take on: decreasing the OP requirement from 100 bar to 30-50 bar

- The model predicts that it is feasible.
- Mass spectroscopy indicates that wire releases plenty of gases while being heated up
- Need collaboration between powder manufacturer, wire manufacturer, and materials scientists.

Gas species detected by a residual gas analyzer while heating Bi-2212 wires at 180 ° C/h in vacuum.

Shen et al., J. Appl. Phys., 113, 213901 (2013)

Driving questions for the next section

- Quench detection and protection of Bi-2212 magnets
 - What are quench degradation limits and mechanisms?
 - How high the hot spot temperature needs to be for the resistive voltage of a normal zone to be detectable?
 - At what speed a normal zone propagates and how does this speed depend on operating conditions and conductor processing?
 - How can we achieve a quench protection with a time constant <500 ms.</p>

A large pool of wires, including OP wires, shows a consistent I_c/I_{co} - T_{max} behavior

The observed quench degradation is strain driven - first evidence: irreversible and reversible degradation behavior

- Wires want to expand but couldn't.
 - Silver buckles under compressive stress.

0.2

0.6

0.4

Silver and 2212 expand differently. at 4.2 K

J_c-Strain for Ag/2212 wire

400

0.9

0.8 -

350

300 K seems safe – even for coils under good electromagnetic stresses

Coil 2 at 7 T, stress=60 MPa

Liyang Ye, PhD thesis work Justin Schwartz, Tengming Shen

A 1 bar processed coil and heater-induced quench experiments

6-layer, 245 turns, epoxy impregnated Bi-2212 solenoid

MQE determined from heater-induced quench experiments: a master plot

Shen, Ye et al., to be submitted and to appear in ArXiV

[1] Ye et al., SuST, 2013[2] Yang et al., IEEE, 2012

T=4.2 K, B=7 T, I_o=100 A – Quench propagation and temperature rise at J=88 A/mm²

T=4.2 K, B=7 T, I_0 =400 A – Quench propagation and temperature rise at J=354 A/mm²

NZPV determined from heater-induced quench experiments: a master plot

appear in ArXiV

Quench detection – Terminal voltage that coil sustains without a quench varies with transport current

Should a dynamic quench detection threshold used?

Hot spot temperature v.s. resistivity voltage across normal zone: quench detection is demanding; V_d =50-200 mV is preferred

Note: Temperature from voltage measurement, not from TCs. TCs tend to underestimate T_{max} when dT/dt>10 K/s.

Temperatures derived from voltages across the 1.5 cm hot zone:

- 100 A-> 400 A, quench detection becomes more difficult.
- Beyond 400 A, quench detection should becomes easier (prediction)
- Not wise to increase V_{detection} beyond 1
 V

Shen, Ye et al., to be submitted and to appear in ArXiV

4.2 K, 7 T, coil experiment

When B> 5 T, NZPV of 2212 is still in cm/s – but it should be in tens of cm/s or even m/s considering its small temperature margin

- T_c (2212) drops to 25 K when B>5 T
 - B=0: typical HTS, NZPV in cm/s
 - B>5 T: somewhat LTS, NZPV should be in m/s but actually in cm/s
- A big reason is low n-value in Bi-2212
 - Typical n-value for 1 bar coils:5-12
 - Typical n-value for OP coils: 12-20

Larbalestier et al, Nature Materials, 2014

Summary

- Overpressure processing, though not easy, is fundamentally sound
 - Sood OP cables and coils made and tested
- Found a consistent quench degradation behavior in a large spool of wires
- Deeper understanding of quenches
 - Measure MQE vs. J and B, and NZPV vs. J and B
 - First careful measurement of T_{max} v.s. V_d
 - Strong effects of n-values on quench propagation and detection revealed

Project pull:

- 28-30 T all SC solenoid NHMFL NMR and DOE SIBR/STTR
- The world's first cosine-theta Bi-2212 dipole
- The world's first canted-cosine-theta Bi-2212 dipole

Slow propagation of normal zones in Bi-2212 magnets: Effects of conductor E-J characteristics

The joule power model that describes Nb-Ti and Nb₃Sn well is not suitable for 2212 because 2212 has a small n-value (5-15 in fields)

New nonlinear current-transfer model: Smaller N-value -> more difficult to drive formation of normal zones

- Low N-values, in combination with small RRR, increase T_{cs}.
 - More pronounced at high I_o/I_c and at high magnetic fields.

N-values \clubsuit : conductor stability \Uparrow , normal zone propagation speed \clubsuit

- Low NZPV in 2212 at B > 5 T is largely caused by low n-values.
- Increase the N-value -> In-field NZPV in m/s (though sacrificing some stability)

