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Impedance calculations for f< 1

Analytical calculation (applies only to simple structures)

3D EM simulation (CST Particle Studio)

In the LHC, SPS, PS CST EM simulation are performed in the ultra-relativistic approximation

(F =1

Xt

B ~ ~
:Bisj *=0.3 Boc =09

The use of 3D EM simulations for f< 1 is not straightforward at all



3D CST EM simulation for f< 1

2 () = Z(B)+ Z55 (B)

\ Depend only on the source

contribution due to the interaction of
beam and external surroundings

To single out the impedance contribution Z(,B) the direct space charge must be removed
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Present PSB transverse impedance model

e Elements included in the database:
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weighted by the respective length and beta function. Also the iron in the magnet is taken into account
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Present PSB transverse impedance model

* Elements included in the database:
— Analytical calculation of the resistive wall impedance that takes into account the different PSB vacuum chambers
weighted by the respective length and beta function. Also the iron in the magnet is taken into account
—  Extraction kicker
impedance due to the ferrite loaded structure
impedance due to the coupling to the external circuits (analytical calculation)
— Indirect space charge impedance
. . C-Magnet model
— Broadband impedance of step transitions
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Indirect space charge

Analytical calculation based on the PSB aperture model (provided by O. Berrig)
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PSB: indirect space charge impedance
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Indirect space charge:
refinement of the calculation
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Indirect space charge:
refinement of the calculation
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PSB: indirect space charge impedance
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Impedance [Q/m]
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A theoretical calculation for the C-Magnet model

C-Magnet model

kicker
Z = ZTEM + 2M

| . - 2.
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PSB extraction kicker: impedance due
to the ferrite loaded structure Z,,
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PSB extraction kicker: impedance due to
the coupling to the external circuits Z,,,
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Broadband impedance of a step transition
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Broadband impedance of step transitions

be ZZben-

Weak dependence on the relativistic beta and L
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3D model of the KSW kicker




Coating of the ceramic chamber
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Coating of the ceramic chamber
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Analytical model: axially symmetric
multilayer structure

Assuming uniformity of
the coating thickness

I Resistance of the coating I

L

R _ ,0 coating
2rrt

coating

The beam coupling impedance
strongly depends on the
resistance of the coating




Effect of the ceramic chamber on the
KSW longitudinal impedance
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The shielding (coated ceramic chamber) strongly reduces the longitudinal impedance




Effect of the ceramic chamber on the
KSW longitudinal impedance
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Effect of the ceramic chamber on the
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Effect of the ceramic chamber on the
KSW longitudinal impedance
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Effect of the ceramic chamber on the
KSW transverse impedance
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Effect of the ceramic chamber on the
KSW transverse impedance

- | ===Im [without ceramic chamber]
- |—Re [without coating]
1l | ===Im [without coating]

Impedance [(2/m]

YN 0 L N 1L U L T O 11 N O UL I I B ¢
10 10 10° 10’ 10° 10° 10"
Frequency [Hz]

Increase of the impedance due to the smaller aperture
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Effect of the ceramic chamber on the
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Effect of the ceramic chamber on the
KSW transverse impedance
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Effect of the ceramic chamber on the
KSW transverse impedance

R [Q]

‘frocR‘




KSW: transverse impedance optimization

I Shift the KSW impedance spectrum out of the PSB frequency range of interest I

I Frequency range of interest I
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First possible unstable betatron line Maximum frequency excited by the beam



KSW: transverse impedance optimization

I Shift the KSW impedance spectrum out of the PSB frequency range of interest I

I Frequency range of interest I

f<f<f

beam

First possible unstable betatron line Maximum frequency excited by the beam

[ = 0.3 fl =~ 340KHz Worst case at extraction (smallest bunch length)



Beam power spectrum [dB]
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KSW: transverse impedance optimization

I Frequency range of interest I

f<f<f

4

0.34MHz < f <40 MHz

) 4

0.2 Q<R<24 Q)
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R << 0.2 O Shift of the KSW impedance

_ spectrum significantly out of the

R >> 24 Q) PSB frequency range of interest
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Present PSB transverse impedance model

* Elements included in the database:
— Analytical calculation of the resistive wall impedance that takes into account the different PSB vacuum chambers
weighted by the respective length and beta function. Also the iron in the magnet is taken into account
—  Extraction kicker
impedance due to the ferrite loaded structure
impedance due to the coupling to the external circuits (analytical calculation)
— Indirect space charge impedance (analytical calculation)
C-Magnet model
— Broadband impedance of step transitions

— KSW magnets

Beam pipe Extraction Kicker

Indirect space charge impe i—1 <,BL>




Total horizontal driving impedance of the PSB
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Total vertical driving impedance of the PSB
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Effective impedance of the PSB

E,.,=160 MeV | E, =1.0GeV | E, =1.4 GeV

1.50/10.00 0.29/1.91 0.19/1.25
0.0084/0 0.012/0 0.0105/0

-0.044/0.13 -0.04/0.11 -0.04/0.11
0.53/0.63 0.53/0.63 0.53/0.63
0.03/0.05 0.04/0.07 0.04/0.07

Indirect space charge

Kicker cables

Kicker ferrite

Resistive wall

KSW 0/0.013 0/0.0013 0/0.0004
Total (expected) 2.03/10.9 0.83/2.7 0.73/2.0
Total (measured ) ?/13.0 ?/4.6 ?/3.8

I Measurements at different energies are consistent with a missing ~2 MQ/m




Comparison between measurements and model of
the vertical coherent tune shifts at different energies
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Comparison between measurements and model of
the vertical coherent tune shift at E,;, =160 MeV

-0.02

AQ

-0.041

-0.05F

-0.07

oo | E— _____________ __________________ __________________ ___________________ ___________________ T _________________ i

003 .................. .................. ............... ............... ................... ................... S ................ _

—Ekin:i 60 MeV (meas'uremen"[s:fit)

—Ekin=160 MeV (PSB impedance model)

006k ___________________ St —bkbttti o S— T— o _______________ i

1 2 3 4 5

6 7 8 9 10

Bunch Intensity x 10"

-10 %
-20 %
-30 %
~40 %
-50 %
-60 %
-70 %
-80 %
~90 %

-100 %



Comparison between measurements and model of
the vertical coherent tune shift at E,;, =160 MeV
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Comparison between measurements and model of
the vertical coherent tune shift at E,, =1.0 GeV

-10 %
-20 %
130 %
-40 %
-50 %
-60 %
: -70 %
0.008F —— S — e i — ___________________ ________________ __________________ ________________ 80 %

—Ekin:1 .0 GeV (measurements: fit) : ; : -90 %
—E,. =1.0 GeV (PSB impedance model
: kin | :( :p | ) ................ .................. ................... ................ _100 %

0,002 _________________ __________________ ______________ ___________________ __________________ __________________ _________________

-0.004

O -0006
<

001

%1 2 3 4 5 & 7 8 9 10

Bunch Intensity x 10"




Comparison between measurements and model of
the vertical coherent tune shift at E,, =1.0 GeV
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Comparison between measurements and model of
the vertical coherent tune shift at E,, =1.4 GeV
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Comparison between measurements and model of
the vertical coherent tune shift at E,, =1.4 GeV
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Summary and future plans

e Measurements at different energies are
consistent with a missing ~2 MQ/m of the PSB
impedance model

e Measurements of the coherent horizontal and
vertical tune shift

e Update of the model according to new
understandings and identification of significant
impedance sources
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Impedance of pumping ports
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Transverse impedance
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The effective vertical impedance for 1 pumping

/ eff ~100 Q/m — port is expected to be well below 0.01% of the
. total PSB broadband impedance




Summary: impedance considerations
on the pumping ports of the new PSB
H- injection region

Obviously, a proper shielding can only be
beneficial in terms of impedance, although no
special issues from the beam coupling
impedance point of view are expected even
without shielding.
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Insulated flanges

In circular accelerators with high acceleration rate the fast variation of the
main magnetic field induce currents in the ground loop.

To overcome the problem one has to cut the vacuum chamber in several
sectors and reconnect them with isolated flanges.

The isolated flange forms a capacitor which inserted in series with the
ground loop constitutes a parallel RLC equivalent circuit.

To shift the resonant frequency to a much lower value and to reduce the
longitudinal impedance, the so called RF-bypass are connected in parallel
to the flange.

R. Cappi, RF bypass on the proton synchrotron vacuum chamber flanges
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Beam coupling impedance of insulated

flanges: example
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Insulated flanges

I Parameter sweep analysis I
C=0.01-100 nF L=0.5-15 pH R=1-100 Q
=0.4 uF =1 Q)

bepass Rbypass

Case of study two bypasses in parallel
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Conclusion on the beam coupling
impedance of insulated flanges

The RF bypass is expected to shift the
impedance spectrum to low frequency (well
below the first possible unstable betatron line of
the PSB) avoiding possible detrimental effect

which could not be excluded in the case without
RF bypass.



Additional impedance sources not
discussed here

* Vacuum chamber of the new H- injection region

— Comparison between Inconel undulated chamber and
titanium coated ceramic chamber

* Finemet cavities

— The longitudinal impedance does not depend on the
relativistic beta

* Foil section of the new H- injection region

— Preliminary simulations do not show narrow
impedances below 100 MHz



Thank you for your attention



Resistive wall impedance: impact of the iron

Resistive wall vertical generalized impedance of the PSB
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Resistive wall impedance

A. Asner et al., The PSB main bending magnets i M (B)
~'1] and quadrupole lenses, Geneva, April 1970. i H = U, ,ur(B) = M

+ :
— 1+ )f/f,

fre = 10 kHz

K. G. Nilanga et al., Determination of
complex permeability of silicon-steel for
use in high frequency modelling of
power transformers, IEEE TRANS. ON
MAGNETICS, VOL. 44, NO. 4, APRIL
2008.




PSB extraction kicker: impedance due to
the coupling to the external circuits Z,,,
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Indirect space charge

Analytical calculation based on the PSB aperture model (provided by O. Berrig)

ZISC _ 1 iZ_ISCﬂ
X,y i Xi\Yi

<:Bx,y> i=1 Rectangular pipe

Circular pipe

K. Y. Ng, Space charge impedances of beams
with non-uniform transverse distributions

— Elliptic pipe
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Definition of impedance

1k "
Z)(x, ¥, X0, Yo, w) [€2] :——f Es(x,y,s, X0, Vo, w)e!*S ds

/

Longitudinal component of the electric field in (x, y) induced by a source charge placed in (x,, y)

tot SC
E. =E +E;

N

Depend only on the source

VA § i(r:ect (IB )

EM simulator uses the total fields 7 (18)

contribution due to the interaction of
beam and accelerator components
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The impedance does not depend on the relativistic beta

S. Persichelli et al., Finemet cavities impedance
studies, CERN-ACC-NOTE-2013-0033, 2013.
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