Unbunched long. Schottky Signals

• 2 particles with different f_{rev} : $f_1 = f_{rev} + \Delta f$

• Spectral density of the n^{th} -band of N particles with random initial phase and a revolution frequency spread f_{rev} + $\Delta f/2$:

Schottky Signals Page 1

Bunched long. Schottky Signals

• Time difference τ to the synchronous particle (f_{rev}) due to synchrotron motion of n=1...N particles:

random amplitude

$$t_n(t) = t_n \sin(2\rho f_s t + y_n)$$
random phase

Schottky signal of the nth particle under phase modulation

$$i_n(t) = zef_{rev} + 2zef_{rev} \overset{\neq}{\underset{h=0}{\text{a}}} \cos\{2\rho h f_{rev}[t - t\sin(2\rho f_s t + Y)]\}$$

- causes sidebands around each $h f_{rev}$ for bunched beams

Schottky Signals Page 2

Ion Schottky Signals at the LHC

- Observed stable, high level Schottky signals at all ion runs!
- Plan to modify the Schottky pickup using the sum signal port

Schottky Signals Page 3