

MSSM in light of recent LHC results. I

Shaaban Khalil

Center for Fundamental Physics

Zewail City of Science and Technology

MSSM Structure

- The MSSM is a straightforward supersymmetrization of the SM with minimal number of new parameters.
- The particle content of MSSM = Two Higgs doublet SM + scalar SUSY partners and fermionic SUSY partners
- Two Higgs doublets are necessary for fermion Yukawa couplings.

H1: down-type-quark and lepton Yukawa couplings

H2: up-type-quark Yukawa couplings

- Different assumptions about SUSY breaking are often made. This leads to quite different phenomenological predictions.
- A new symmetry, called R-symmetry is introduced to rule out the terms violate baryon & lepton number explicitly and lead to proton decay at unacceptable rates.

SUSY Particle Spectrum

Supermultiplet	\mathbf{SM}	SUSY	$SU(3)_C \times SU(2)_L \times U(1)$
Q_L	quarks $q = (u_L, d_L)^T$ (spin $\frac{1}{2}$)	$ ext{squarks } ilde{q} = (ilde{u}_L, ilde{d}_L)^T \ ext{(spin 0)}$	(3, 2, 1/6)
U_L^c	$\begin{array}{c} \text{quarks } u_L^c \\ \left(\text{spin } \frac{1}{2}\right) \end{array}$	$\begin{array}{c} \text{squarks } \tilde{u}_L^c \\ \text{(spin 0)} \end{array}$	$(\bar{3},1,-2/3)$
D_L^c	$\begin{array}{c} \text{quarks } d_L^c \\ \left(\text{spin } \frac{1}{2}\right) \end{array}$	$\begin{array}{c} ext{squark} \ ilde{d}^c_L \ ext{(spin 0)} \end{array}$	$(\bar{3},1,1/3)$
L_L	$egin{aligned} ext{leptons } l = (u_L, e_L)^T \ ext{(spin } rac{1}{2}) \end{aligned}$	$egin{aligned} ext{sleptons} & (ilde{l}) = (ilde{ u}_L, ilde{e}_L)^T \ & (ext{spin} \ 0) \end{aligned}$	(1, 2, 1/2)
E_L^c	leptons e^c_L (spin $\frac{1}{2}$)	$\begin{array}{c} \text{sleptons } \tilde{e}^c_L \\ \text{(spin 0)} \end{array}$	(1, 1, 1)
H_u	Higgs $H_u = (H_u^0, H_u^+)^T$ (spin 0)	Higgsino $\tilde{H}_u = (\tilde{H}_u^0, \tilde{H}_u^+)$ (spin $\frac{1}{2}$)	(1, 2, 1/2)
H_d	$\begin{array}{c} \text{Higgs } H_d = (H_d^-, H_d^0)^T \\ \text{(spin 0)} \end{array}$	Higgsino $\tilde{H}_d = (\tilde{H}_d^-, \tilde{H}_d^0)^T$ (spin $\frac{1}{2}$)	(1, 2, 1/2)

MSSM Lagraganian

The MSSM Lagrangian can be written as

$$\mathcal{L}_{\text{MSSM}} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{matter}} + W + \mathcal{L}_{\text{soft}},$$

The gauge Lagrangian is given by

$$\mathcal{L}_{\rm gauge} = -\frac{1}{4} F_G^{a\;\mu\nu} F_{G\;\mu\nu}^a + i \bar{\lambda}_G^a \bar{\sigma}^\mu D_\mu \lambda_G^a + \frac{1}{2} D^a D_a,$$

The matter Lagrangian is given by

$$\mathcal{L}_{\text{matter}} = (D^{\mu}\phi_{i})^{\dagger}(D_{\mu}\phi_{i}) + i\bar{\psi}_{i}\gamma^{\mu}D_{\mu}\psi_{i} + F_{i}^{*}F_{i}$$
$$+ ig_{a}\sqrt{2}(\phi^{*}T^{a}\lambda^{a}\psi + \text{h.c.}) - \frac{1}{2}g_{a}^{2}(\phi_{i}^{*}T^{a}\phi_{i})^{2},$$

Where

$$D_{\mu} = \partial_{\mu} + ig'YB_{\mu} + ig\frac{\tau^{i}}{2}W_{\mu}^{i} + ig_{s}\frac{\lambda^{a}}{2}G_{\mu}^{a}.$$

MSSM Superpotential

 MSSM superpotential describes the interactions between Higgs bosons and matter Superfields

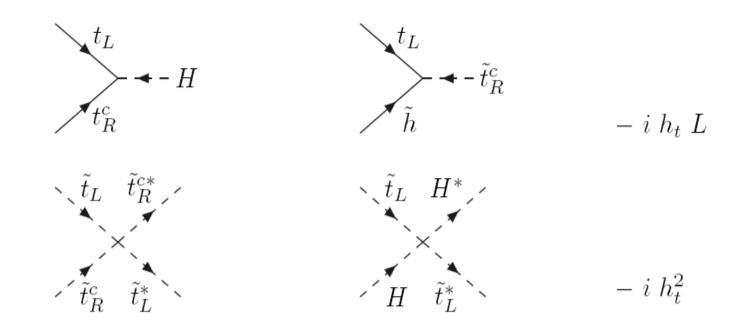
$$W = Y_u Q_L U_L^c H_u + Y_d Q_L D_L^c H_d + Y_e L_L E_L^c H_d + \mu H_d H_u.$$

Need of two Higgs doublets

$$Y_{Q_i} + Y_{d_R^c} = \frac{1}{6} + \frac{1}{3} = \frac{1}{2} \quad \Rightarrow \quad Y_{H_d} = -\frac{1}{2}$$

$$Y_{Q_i} + Y_{u_R^c} = \frac{1}{6} - \frac{2}{3} = -\frac{1}{2} \quad \Rightarrow \quad Y_{H_u} = \frac{1}{2}$$

in the SM $H_u = H$ and $H_d = H^*$. However, a Superpotential containing H^* would be non-supersymmetric.

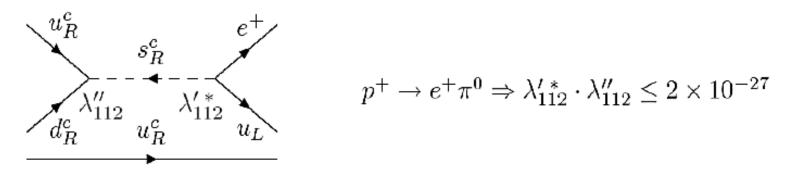

A second doublet also required to cancel the triangle anomaly.

Example: top Yukawa

$$W = h_t Q_L H t_R^c$$

$$L_{int} = -\frac{1}{2}W^{ij} \psi_i \psi_j - \frac{1}{2}W^{ij*} \bar{\psi}_i \bar{\psi}_j - W^i W_i^* = -\frac{1}{2} h_t [H Q_L t_R^c + \tilde{Q}_L \tilde{h} t_R^c + \tilde{t}_R^c Q_l \tilde{h}] + c.c. - h_t^2 \left(|H \tilde{t}_R^c|^2 + |H \tilde{Q}_L|^2 + |\tilde{Q}_L \tilde{t}_R^c|^2 \right)$$

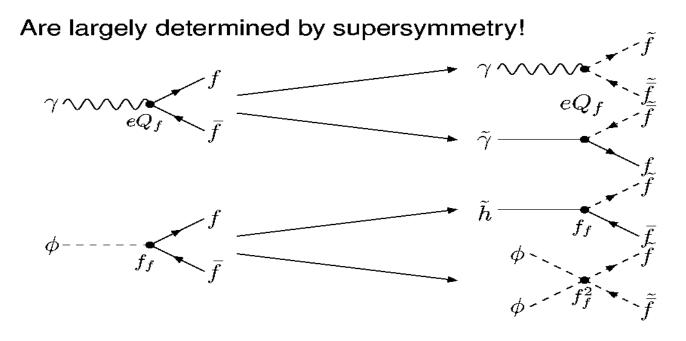
From here the Feynman rules,



R-Parity

There are other Gauge invariant terms that can appear in W

$$W_{\Delta L=1} = \lambda^{ijk} L_i L_j e^c_{Rk} + \lambda'^{ijk} L_i Q_j d^c_{Rk} + \epsilon^i L_i H_2$$
$$W_{\Delta B=1} = \lambda''^{ijk} u^c_{Ri} d^c_{Ri} d^c_{Rk}$$


violate baryon or lepton number. If λ' and $\lambda'' \neq 0 \Rightarrow$ rapid proton decay!!

New discrete symmetry, R-parity, forbid these terms $R_P = (-1)^{3B+L+2S}$. SM particles and Higgs bosons $R_P = +1$ all superpartners $R_P = -1$

R-parity conservation implies that:

- 1. SUSY particles are produced or destroyed only in pairs
- 2. The LSP is absolutely stable and it is a candidate for Dark Matter.

 A major signature for R-parity conserving models is represented by events with missing Energy:

For instance e+ e- → jet + missing energy

Soft SUSY Breaking

- SUSY must be broken, $m_{\tilde{e}} \neq m_e, m_{\tilde{q}} \neq 0$.
- Solve hierarchy problem, broken by terms of possitive mass dimension Soft Supersymmetry Breaking, and $M_{susy} \leq \mathcal{O}(1 \text{ TeV})$.
 - Gaugino masses

$$L_{soft}^{(1)} = \frac{1}{2} \left(M_1 \ \tilde{B}\tilde{B} + M_2 \ \tilde{W}\tilde{W} + M_3 \ \tilde{g}\tilde{g} \right) + h.c.$$

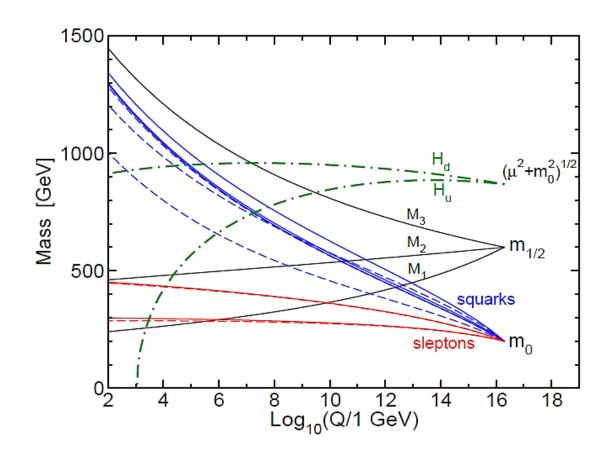
Scalar masses

$$L_{soft}^{(2)} = (m_{\tilde{Q}}^2)_{ij} \tilde{Q}_i \tilde{Q}_j^* + (m_{\tilde{u}}^2)_{ij} \tilde{u}_{Ri}^c \tilde{u}_{Rj}^{c*} + (m_{\tilde{d}}^2)_{ij} \tilde{d}_{Ri}^c \tilde{d}_{Rj}^{c*} + (m_{\tilde{L}}^2)_{ij} \tilde{L}_i \tilde{L}_j^* + (m_{\tilde{e}}^2)_{ij} \tilde{e}_{Ri}^c \tilde{e}_{Rj}^{c*} + (m_{H_1}^2) H_1 H_1^* + (m_{H_2}^2) H_2 H_2^*$$

• Trilinear couplings and B-term

$$L_{soft}^{(3)} = (Y_d^A)^{ij} \tilde{Q}_i H_1 \tilde{d}_{Rj} + (Y_e^A)^{ij} \tilde{L}_i H_1 \tilde{e}_{Rj}^c + (Y_u^A)^{ij} \tilde{Q}_i H_2 \tilde{u}_{Rj}^c + B\mu H_1 H_2$$

 $m_{\tilde{Q}}^2$, $m_{\tilde{u}}^2$, $m_{\tilde{d}}^2$, $m_{\tilde{L}}^2$ and $m_{\tilde{e}}^2$, hermitian 3×3 matrices in flavour space. (Y_d^A) , (Y_u^A) and (Y_u^A) complex 3×3 matrices


Soft SUSY breaking in general MSSM more that 100 parameters !! Most of the possible flavour structures in soft terms severely constrained by experiment \Rightarrow SUSY flavour and CP problems (lecture 5).

CMSSM (or mSugra)

Supersymmetry breaking mediated by gravitational interactions, Minimal Kähler potential and gauge kinetic functions. At the Susy breaking scale:

$$m_{\tilde{Q}}^2 = m_{\tilde{u}}^2 = m_{\tilde{d}}^2 = m_{\tilde{L}}^2 = m_{\tilde{e}}^2 = m_0^2 \mathbf{1} \qquad m_{H_1}^2 = m_{H_2}^2 = m_0^2$$
$$(Y_d^A)_{ij} = A_0(Y_d)_{ij} \qquad (Y_u^A)_{ij} = A_0(Y_u)_{ij} \qquad (Y_e^A)_{ij} = A_0(Y_e)_{ij}$$

- In CMSSM (mSUGRA), universality of soft SUSY breaking terms is assumed at GUT scale.
- The RGE are used to calculate the parameters at the electroweak scale.

Electroweak Symmetry Breaking

The potential for the neutral Higgs fields

$$V_{Higgs} = (m_{H_1}^2 + \mu^2)|H_1^0|^2 + (m_{H_2}^2 + \mu^2)|H_2^0|^2 + B\mu H_1^0 H_2^0 + c.c. + \frac{g^2 + g'^2}{8}(|H_2^0|^2 - |H_1^0|^2)^2$$

Using gauge invariance to rotate the VEVs from charged components:

$$\langle H_u \rangle = \begin{pmatrix} 0 \\ v_u \end{pmatrix} , \qquad \langle H_d \rangle = \begin{pmatrix} v_d \\ 0 \end{pmatrix}$$

- We minimize the potential with $an eta = v_u/v_d$ and $M_Z^2 = \frac{1}{2}(g^2 + g'^2)(v_u^2 + v_d^2),$
- Electroweak Breaking Conditions:

$$|\mu|^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} - M_Z^2 / 2, \qquad \sin 2\beta = \frac{-2B\mu}{m_{H_d}^2 + m_{H_u}^2 + 2|\mu|^2}.$$

• CMSSM is completely determined by m_0 , $M_{1/2}$, A_0 , and $tan\beta$ plus sign μ

Higgs mass in SUSY models

- SUSY models include at least two Higgs doublets.
- This means: 8 degrees of freedom, 3 eaten up by the W± and Z \rightarrow 5 Higgs fields: h^0, A^0, H^0, H^{\pm}
- Connection between Higgs masses and gauge boson masses:

$$\begin{split} V_{Higgs} &= m_1^2 |H_1|^2 + m_2^2 |H_2|^2 - m_3^2 (H_1 \cdot H_2 + \bar{H}_1 \cdot \bar{H}_2) \\ &+ \frac{g_2^2}{8} (\bar{H}_1 \tau^a H_1 + \bar{H}_2 \tau^a H_2)^2 + \frac{g_1^2}{8} (|H_1|^2 - |H_2|^2)^2 \\ &+ \Delta V, \\ m_h^2 &\leq m_Z^2 \cos^2 2\beta + \frac{6}{(2\pi)^2} \frac{m_t^4}{v^2} \ln \frac{m_{stop}^2}{m_t^2}, \quad (\tan \beta = \frac{\langle H_2^0 \rangle}{\langle H_1^0 \rangle}) \\ m_h &< 135 \text{GeV} \end{split}$$

Possible vacuum instability is saved by supersymmetry

Squarks & Sleptons

The squark mass matrices

$$M_{\tilde{u}}^{2} = \begin{pmatrix} M_{Q}^{2} + m_{u}^{\dagger} m_{u} + D_{LL}^{u} & m_{u} (A_{U} + \mu \cot \beta) \\ (A_{U}^{\dagger} + \mu^{*} \cot \beta) m_{u}^{\dagger} & M_{U}^{2} + m_{u} m_{u}^{\dagger} + D_{RR}^{u} \end{pmatrix}$$

$$M_{\tilde{d}}^2 = \begin{pmatrix} K^{\dagger} M_Q^2 K + m_d^{\dagger} m_d + D_{LL}^d & m_d (A_D + \mu \tan \beta) \\ (A_D^{\dagger} + \mu^* \tan \beta) m_d^{\dagger} & M_D^2 + m_d m_d^{\dagger} + D_{RR}^d \end{pmatrix}$$

Analogous expressions are obtained in the slepton sector, where

$$D_{RR}^f = (m_Z^2 \cos 2\beta \ e_f \sin^2 \theta_W) \ 1.$$

Here T_{3f} is the third component of the weak isospin and e_f is the charge.

Charginios

☐ The mixing of the charged gauginos and charged Higgsinos is described by:

$$M_C = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin \beta \\ \sqrt{2}M_W \cos \beta & -\mu \end{pmatrix}$$

☐ The chargino masses are given by

$$\begin{split} M_{2,1}^2 &= 1/2(M_2^2 + \mu^2 + 2M_W^2 \\ &\pm \sqrt{(M_2^2 - \mu^2)^2 + 4M_W^4 \cos^2 2\beta + 4M_W^2 (M_2^2 + \mu^2 - 2M_2\mu \sin 2\beta)}) \end{split}$$

■ Within the mSUGRA scenario we have

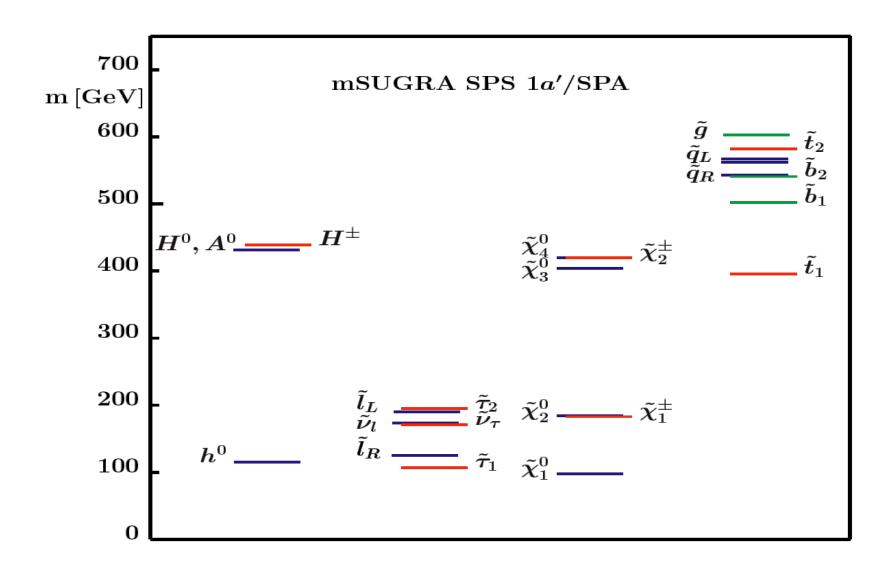
$$M_{\widetilde{\chi}_{1}^{0}} \approx 0.45 M_{1/2}$$

$$M_{\widetilde{\chi}_{2}^{0}} \approx M_{\widetilde{\chi}_{1}^{\pm}} \approx 2 M_{\widetilde{\chi}_{1}^{0}}$$

$$M_{\widetilde{\chi}_{2}^{0}} \approx (0.25 - 0.35) M_{\widetilde{g}}$$

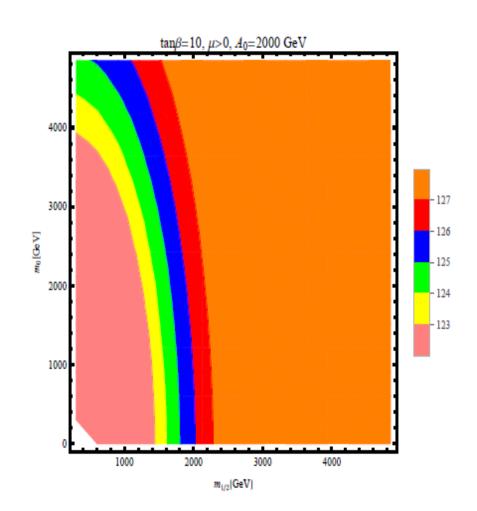
Neutralinos

• The neutralinos χ_i (i=1,2,3,4) are the physical (mass) superpositions of fermionic partners of Bino, Wino and Higgsinos.

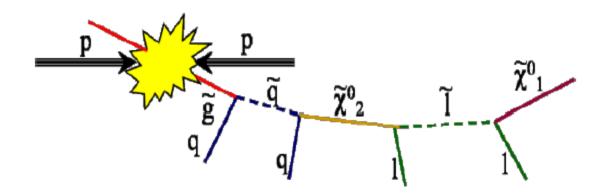

$$M_N = \begin{pmatrix} M_1 & 0 & -M_Z \cos \beta \sin \theta_W & M_Z \sin \beta \sin \theta_W \\ 0 & M_1 & M_Z \cos \beta \cos \theta_W & -M_Z \sin \beta \cos \theta_W \\ -M_Z \cos \beta \sin \theta_W & M_Z \cos \beta \cos \theta_W & 0 & \mu \\ M_Z \sin \beta \sin \theta_W & -M_Z \sin \beta \cos \theta_W & \mu & 0 \end{pmatrix}$$

The lightest neutralino will be a linear combination of the original fields:

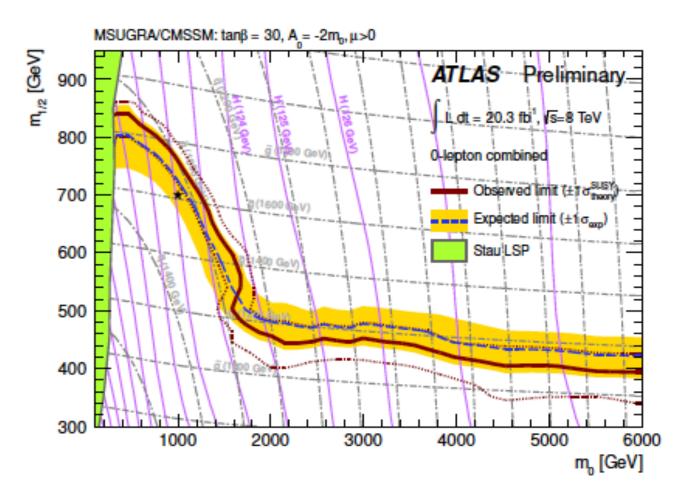
$$\tilde{\chi}_1^0 = N_{11}\tilde{B}^0 + N_{12}\tilde{W}^0 + N_{13}\tilde{H}_1^0 + U_{14}\tilde{H}_2^0$$


- The lightest neutralino can be the lightest supersymmetric particle (LSP).
- Stable Weakly Interacting Massive Particle (WIMP). Interesting candidate for DM.

mSUGRA Mass Spectrum


SUSY Higgs Prospects at the LHC

- In July 2012 the ATLAS and CMS collaborations announced the detection of a new particle with 125 GeV mass consistent with a Higgs boson.
- Although a Higgs discovery is not a priori an indication for SUSY, still, the confirmed existence of the lightest Higgs boson is in favor of it
- Higgs mass of order 125 GeV requires a gaugino mass m_{1/2} of order 1.5 TeV.
- The smaller A0 is, the larger $m_{1/2}$ is needed to satisfy this value of Higgs mass.
- It is also remarkable that the scalar mass m₀ remains essentially unconstrained.
- Such large values of $m_{1/2}$ and A_0 seem to imply a heavy SUSY spectrum.


SUSY signature

 At LHC the total SUSY particle production cross section are largely dominated by strongly interacting sparticles.

• Typical high mass SUSY signal has squarks and gluinos which decay through a number of steps to quarks, gluons, charginos, neutralinos, W, Z, Higgses and finally to a stable χ^0_1 .

LHC Constraints on $(m_0-m_{1/2})$

ATLAS exclusion limits, at 95% C.L. for constrained MSSM model with $\tan\beta$ = 30, A_0 = $-2m_0$ and μ > 0, on (left) $(m_0 - m_{1/2})$. CMS limits are the same.