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= Superconducting magnet
= Short duration losses
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Efficiency of LHC collimation

11 Gy/s at the TCP.B6R7.B2 in IR7
Losses Fill_3569 B1_B2 4ooocev 2013\02 15 03:15:03

. N —
10 A B A \||1—coldrl
10 "

—_ 1

£

= 107

& a

= 10~

> -4

- 10

m 10'5
107 |
107 ' ‘ A ,

0 5000 10000 15000 20000 25000

s [m]

Determination of efficiency needed to plan upgrade requirements for collimation system

IPAC 2014 Beam-induced Quench Tests of LHC Magnets, B.Dehning 3



Dust particle and LHC operation

Observation from 2011 to 2013

Beam loss created with a duration between

100 us to several ms

Extrapolation of event rate to

operation at 7 TeV

Number of events would
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due to recover from quench
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Increase of knowledge in the sub and millisecond range required for down time estimates
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Super conducting magnet quench levels (LHC bending magnet)

Equivalent
resentation
P ~_Short Intermedlate Steady state Loss durations
quench levels 10°F———— [ A
= . | — 045 ’I‘eV i
= 10
s — 35T¢
Energy E 10 _ ----- Constant heat
102L---- it
a J_D canaC|y
=4 J.Ul I _____ _—-.-—F_. ..
=1 " 5
lD” | . . . .. ] .
Heat capaC|ty of strands Cooling by He system
107 ,
: : = 0.45 TeV |...]
3.5TeV
Power 7Te:V :
Constant heat _
transfer
_______ —
: . : . —— ]
101 II-II—-'II ”-I—‘il ”-II—QI ”-Il—ll [] II-Illl II-IQ
10-° 10 10~ 10 10 10 10 10

Aim of quench test: Loss duration [s]

How much of beam intensity could impact on equipment and not quench a magnet
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Methodology

Quench test

T > Tcrit
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= Test results in upper and lower bound of quenching beam intensity
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Methodology

Quench test simulation _
T > Tcrit
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= Shower simulation of local quench energy density

= Lower and upper intensity bound => lower und
upper local quench energy density bound

= Electro-thermal simulation of local quench energy density

= Quench test allows to validate combined result of shower
and electro-thermal simulations
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Methodology

Quench test simulation _
T > Tcrit
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= Shower simulation of local quench energy density

= Lower and upper intensity bound => lower und
upper local quench energy density bound

= Electro-thermal simulation of local quench energy density

= Quench test allows to validate combined result of shower
and electro-thermal simulations

= Shower simulations are also validated by beam loss measurements
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Short loss duration
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Results

Regime Method Type Temp. I/l | LB/QL | UB/QL |Comment
K] (%]

short kick MB 19 6 n/a  |0.47°")7 | Tracking uncertainty.

short collimation MOQM 4.5 46/58| 1.45 1.94 | Saturated BLM signals. No FLUKA validation.
T L _ 40 +0.44 | Timing uncertainty. Quench in ends.
intermediate  wire scanner MBRB 4.5 50 1048 5, |0.717, UB for N, /Ny = 45%.
intermediate  wire scanner  MQY 4.5 50 0.96 n/a No upper bound.
: : : 0. +07 | Timing uncertainty. Nucleate boiling?

e . C 0.46 0.7 g g
intermediate  orbit bump MQ 1.9 54 12797707 4317 UB for N,/N, = 62%.
steady-state  collimation MB 19 57 036 n/a Peak loss in magnet cml'ls. CDDIII'.[‘_L‘-‘_'. Mudell'ale.PLUKA

—0.08 agreement with BLM signals. No upper bound.

steady-state  orbit bump MQ 1.9 54 10.33 *1_3'{?':’ 0.47 *1_3'33 Sensitivity to surface roughness. Cooling.
steady-state dyn. orbit bump MQ 1.9 Cooling.
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Reserve slides
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Short term losses

= At E = injection energy

Protection by collimators and quench protection system (QPS)
= Beam loss system posterior diagnostic

= At E > injection energy
= Asynchronous beam bumps
= Sudden variation warm magnet current variations

Collimator losses at and of energy ramp or during optic function the
squeeze at the four experiments

Maximum value of energy distribution along cable cross section
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Methedology

Quench test

T > Tcrit
Proton Proton Shower Quench Electro-thermal Coill
tracking Impact on simulation energy simulations temperature
equipment

\ 72N J

= Quench test: observation quench at certain number of lost protons

= Shower simulation, ratio energy in coil, BLM to number of lost particles

= QT3: ratio of temperature increase to energy deposit in coil (quench
energy)

BLM Time distribution (BLM system)
Magnetic field (

Coil temperature

Cooling conditions

Loss pattern

Beam current monitor
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