1st BLMTWG Meeting, 27.05.2014, B. Auchmann, O. Picha with help from M. Sapinski, E.B. Holzer, A. Priebe.

The dynamic orbit bump quench test and its impact on BLM thresholds.

Overview

- Recall the dynamic orbit-bump QT.
- History of the assumed signal at quench.
- Corrections due to dynamic orbit-bump QT.
- Re-analysis in QTAWG.
- Conclusions and next steps.

Dynamic Orbit Bump QT

- 17.10.2010, 20h23.
- 3-corrector bump.

```
Bump used for the quench test, trim integral at 21 mm when quenching.

MCBV.12R2.B2 RCBV12.R2B2 5.659

MCBV.14R2.B2 RCBV14.R2B2 -0.557

MCBV.16R2.B2 RCBV16.R2B2 5.728

we did not revert the trim as convrters are down and BP will anyway be regenerated at the next ramp.
```


courtesy A. Priebe

CERN

EXPERIMENT

z with respect to MQ.14R2 [m]

- ➤ Three pilot bunches with intensities of (5-6) ·10⁹ + (total 1.85 ·10¹⁰ p+)
- Loss rate increasing in time
- Loss duration: around 6 s

RS09 threshold at the time: 52 mGy/s for horizontal losses. Factor ~1/3 was applied for vert. losses.

The assumed signal at quench is composed of three input factors:

$$\text{BLMSignal@Quench}(E,t) = \frac{\text{BLMResponse}(E,t) * \text{QuenchLevel}(E,t)}{\text{EnergyDeposit}(E,t)}$$

• Its units are $mGy = \frac{mGy/p * mJ/cm^3}{mJ/(cm^3p)}$

- At LHC startup, MQ arc BLM thresholds were based on:
 - Ch. Kurfürst diploma thesis on BLM thresholds in MQs, i.e., losses in the interconnections.
 - Report 44 quench levels.
- In 2009 the assumed energydeposition / proton in BLMs 2 and 3 were replaced by a Geant4 model for the first beam-induced quenches in MBs (Note 422, horizontal distributed losses)*.

E_{beam}	E _D ^{cable} [mJ/cm ³]	quench limit	proton rate	proton rate				
[TeV]	per proton	$P_{QL}[mW/cm^3]$	to quench [s ⁻¹]	in max [s ⁻¹ m ⁻¹]				
horizontal, pointlike loss								
0.45	$2.43 \cdot 10^{-8}$	320	$1.32 \cdot 10^{10}$	-				
7	$8.05 \cdot 10^{-7}$	12	$1.49 \cdot 10^{7}$	-				
vertical, pointlike loss								
0.45	$1.08 \cdot 10^{-8}$	320	$2.96 \cdot 10^{10}$	-				
7	$4.21 \cdot 10^{-7}$	12	$2.85 \cdot 10^{7}$	-				
horizontal, distributed loss								
0.45	$1.22 \cdot 10^{-9}$	320	$2.63 \cdot 10^{11}$	$2.58 \cdot 10^{10}$				
7	$1.83 \cdot 10^{-8}$	12	$6.56 \cdot 10^{8}$	$6.45 \cdot 10^{7}$				
vertical, distributed loss								
0.45	$8.50 \cdot 10^{-10}$	320	$3.77 \cdot 10^{11}$	$3.71 \cdot 10^{10}$				
7	$6.22 \cdot 10^{-9}$	12	$1.92 \cdot 10^{9}$	$1.89 \cdot 10^{8}$				

Table 3: Energy density depositions in thermal equioibrium volumes E_D^{cable} (per proton), quench margin in the cable and the resulting maximal proton loss rate for various loss configurations and beam energies. In case of distributed loss a loss rate density in the loss maximum is also given. Note 422

^{*...}vague agreement. other sources?

In 2010 the steady-state quench level was still computed according to Report 44, but with input from the D. Bocian 2-D model.

- From Note 422 it was inferred that BLM signals for vertical losses may be >3x lower than for horizontal losses.
- The below plots are from a preliminary analysis of the events in Oct. 2010.
- The green lines represent the assumed BLM signal at quench in RS10 (5.24 s) divided by 3.5 to convert to a vertical loss scenario.

Ad hoc corrections of thresholds for startup 2011

 Question: Can we explain the factor 0.33 after a MAD-X/FLUKA/QP3 re-analysis?

Re-understand the signals

RS01-09: large variation for steady-state test!

Re-understand the signals

- Loss spike in the last 40 ms explains the variation, between running sums.
- · Combined slow- and intermediate-duration loss scenario!

- Re-understand the signals
- The cell 14 thresholds were reduced by a factor ~3.5; likely to adjust the assumed beam-loss scenario to vertical losses, based on Note 422 results.

- Quench levels in RS09:
 - Report 44 / Bocian: 200 mJ/cm³
 - QP3 + 10-stack data: 240 mJ/cm³

P. P. Granieri, Heat Transfer between the Superconducting Cables of the LHC Accelerator Magnets and the Superfluid Helium Bath. PhD thesis, EPFL, Lausanne, 2012.

- Quench levels for quench test loss profile
 - QP3 + 10-stack data: 373mJ/cm³

- Energy deposition in coils:
 - Kurfürst thesis: 1.1E-07 mJ/(cm³ p)

x25 x1.8

FLUKA model: 6.1E-08 mJ/(cm³ p)

- Consistency check
 - Np = 0.88E10
 - QuenchLevel = 373 mJ/cm³

Scenario	Edep x Np	
Kurfürst thesis	968 mJ/cm ³	
Note 422	38 mJ/cm ³	
FLUKA	536 mJ/cm ³	

- BLM signals:
 - Kurfürst thesis: 1.44E-06 mGy/p
 - FLUKA model: 5.3E-06 mGy/p (validated within 30%)

- MAD-X / FLUKA simulation normalized to losses in the last second.
- FLUKA data in FLUKA/BLM comparison is to be reduced by ~20% to account for losses on the collimators.
- Resulting BLM signal agreement within 30%.

courtesy N. Shetty

Thresholds corrections

RS09 (1.3 s) models vs. measurement in BLM position 2.

Model	Loss	Quench Level [mJ/cm³]	Energy deposition [mJ/(cm³ p)]	BLM signal [mGy/p]	BLM signal @ quench [mGy]
Bocian/Kurf ürst	hor.	200	1.07E-07	1.44E-09	3
Bocian/Kurf ürst/422	hor.	200	4.26E-09	1.44E-09	67
QP3/FLUKA	ver.	240	6.1E-08	5.3E-09	21
QP3/FLUKA*	hor.	240/96	1.49E-07	7.96E-09	12/5
Measured	ver.				11
Measured*	hor.				3

^{* ...2013} steady-state orbit-bump quench test, threshold in RS11 re-scaled to RS09.

Conclusions and Next Steps

- Is a rectangular pulse in time always the best scenario for thresholds?
- Use of Note 422 energy deposition on MQ BLMs seems doubtful.
- Factor 3 was applied throughout (even where the Kurfürst energy deposition is used). This needs to be re-assessed.
- For future thresholds, we need to study in detail BLM positions 1 and 3.

2013 QT analysis

Master Threshold and Monitoring Factors

The master threshold is computed per BLM family:

MasterThreshold(E, t) = 3 * BLMSignal@Quench(E, t)

The applied threshold is the comination of

Threshold(E, t) = MonitorFactor * MasterThreshold(E, t)

where $MonitorFactor \in [0.1, 1]$ can be set by the operators.

