

Measurement of the $t\bar{t}\gamma$ cross section at $\sqrt{s} = 7$ TeV using the ATLAS detector

<u>Gaetano Barone</u>

DPNC, University of Geneva

Outline

- Introduction
 - Probe top EM couplings
- Analysis Strategy
 - Selection
 - Irreducible backgrounds
 - Profile likelihood method
- Results
 - Fiducial Cross Section

Motivation

- Top is expected to play a crucial role in electroweak symmetry breaking
 - Manifestation new physics in top related precision measurements
- Electromagnetic (E.M.) couplings :
 - Extensive modifications in Standard Model (S.M.) extensions
 - composite quarks, etc ..
- Measurement of $t\bar{t}\gamma(Z)$ cross section
 - Direct probe of VA, and A couplings of the t̄tγ (Z) vertex
 - Direct probe of E.M.
 coupling (top charge)
 - Recent NLO calculation <u>arXiv:1102.1967v2</u>

The process

• Probe *t*γ vertex

- Direct probe via $q\overline{q} \rightarrow \gamma^* \rightarrow t\overline{t}$ impossible at LHC
- Study γ production in association with $t\overline{t}$
- Classification of processes
 - Radiative production $pp \rightarrow t \overline{t} \gamma$, no γ radiation in top decay products $(t \rightarrow Wb)$

• Radiative top decay: $t \rightarrow Wb\gamma$ (on-shell decay) or W decay chain

G. Barone

No distinction from above processes: non negligible interferences

SPS 2014

• Single lepton plus jets

Strategy

- Photon candidates from rectangular cuts on shower shapes
 - ★ rejection of $\pi^0, \eta^0 \rightarrow \gamma \gamma$ (main background)
- Photon track isolation as discriminant: $p_T^{20}(\gamma)$
 - π^0, η^0 wider showers than prompt γ
 - Data driven templates
 - ♦ photon $Z \rightarrow ee$, 4jets
 - hadron control region (C.R.)
- Signal Extraction with profile likelihood on $p_T^{20}(Y)$

 $L\left(p_{\mathrm{T}}^{\mathrm{cone20}} \,|\, \sigma_{t\bar{t}\gamma},\, \mu(\varepsilon(\vec{\theta}),\,\mathcal{L}),\, N_b(\vec{\alpha})\right) =$

poisson expectation

background uncertainties efficiency/acceptance uncertainties

$$v_{j} = v_{j}(\sigma_{t\bar{t}\gamma}, \mu(\varepsilon(\vec{\theta})), N_{b}(\vec{\alpha})) = \mu\sigma_{t\bar{t}\gamma} \int dp_{\mathrm{T}}^{\mathrm{cone20}} F_{S}^{j}(p_{\mathrm{T}}^{\mathrm{cone20}} | \mu\sigma_{t\bar{t}\gamma}) + \sum_{i=1}^{n} N_{b}^{i}(\vec{\alpha}_{i}) \int dp_{\mathrm{T}}^{\mathrm{cone20}} F_{b^{i}}^{j}(p_{\mathrm{T}}^{\mathrm{cone20}} | N_{b}^{i}(\vec{\alpha}_{i})) + \sum_{i=1}^{n} N_{b}^{i}(p_{\mathrm{T}}^{\mathrm{cone20}} | N_{b}^{i}(\vec{\alpha}_{i})) + \sum_{i=1}^{n} N_{b}^{i}(p_{\mathrm{T}}^{\mathrm{cone20}} | N_{b}^{i}(\vec{\alpha}_{i})) + \sum_{i=1}^{n} N_{b}^{i}(p_{\mathrm{T}}^$$

Selection

- Selection for $t\overline{t} \rightarrow l$ +jets ($l=e,\mu$)
 - ▶ $N_j \ge 4$, Hepton, N_j (b-tag) ≥ 1
 - Electron channel p_T(e) > 25 GeV :
 - $\Delta R(e,j) > 0.2, E_T^{miss} > 30 \text{ GeV } m_T^{W} > 35 \text{ GeV}$
 - Muon channel $p_T(\mu)$ > 20 GeV:
 - $\Delta R(\mu,j) > 0.4, E_T^{miss} > 20 \text{ GeV}, m_T^{W} + E_T^{miss} > 60 \text{GeV}$
- Tight photon rectangular cuts on shower shapes
 - γ kinematic cuts

 - $\Delta R(\gamma, j) < 0.5$: event removal
 - $\Delta R(\gamma, l) < 0.7$: lepton FSR reduction
 - m(e,γ) > | m_Z ± 5 GeV | : e-fakes suppression from Z decays

June-14

Irreducible Backgrounds

SPS 2014

- Data driven:
 - W+jets+γ
 - Control (C.R) region N_j < 4 b-tag veto</p> $N(\gamma) > 0$
 - Mulitjets
 - \bullet C.R. loose lepton requirements and tight γ
 - e faking γ :
 - + Tag and probe Z→ee(γ)

200

150

250

300

Contribution	e [events]	$\mu \ [\text{events}]$
$Z+\mathbf{j}+\gamma$	3.43 ± 2.35	2.682 ± 1.97
$W+{ m j}+\gamma$	5.38 ± 1.86	15.63 ± 4.41
Multijets	1.4 ± 1.24	1.92 ± 1.13
WW/ZZ/WZ	0.1 ± 0.12	0.20 ± 0.22
Single Top	2.74 ± 0.99	4.24 ± 1.50
$t\bar{t} \rightarrow le + jets$	12.72 ± 2.61	19.53 ± 3.83
Non Fiducial	35.9 ± 2.12	38.8 ± 1.5

- Monte Carlo based :
 - Single Top, WW/ZZ/WZ, Zj (minor backgrounds)

50

100

350

 $p_{_{T}}(\gamma)$ [GeV]

400

$\sigma_{t\overline{t}\gamma}$: Definition

- Fiducial phase space:
 - Avoid extrapolation to region with large theoretical uncertainties
 - Restrict to measured volume in detector acceptance
- Definition (summary):
 - Leptons:
 - ◆ Dressed p_T (I) > 20 GeV, |η| < 2.5
 - Jets:

G. Barone

Anti k-T R=0.4, p_T(j) > 25 GeV, |η| < 2.5

★ E_T(γ) > 20 GeV, |η| < 2.37

- Angular separation (consistent with data selection):
 - ★ $\Delta R(e,j) > 0.2 \Delta R(j,\gamma) > 0.5 \Delta R(\mu,j) > 0.4, \Delta R(l,\gamma) > 0.7$

Uncertainties

SPS 2014

Breakdown:	Source	Uncertainty [%]
-	Signal modelling	9.8
profile likelinood procedure	Lepton modelling	2.6
Signal	Jet Modelling	12.5
5 1811	$E_{\rm T}^{miss}$ modelling	0.3
Direct comparisons generators and	b-tag/Misstag	5.8
different settings	$\gamma { m modelling}$	6.1
 scale variations, PYTHIA/ Herwig, QED FSF 	Irreducible backgrounds	5.5
	Signal template	3.3
	Hadron template	8.0
Signai tempiate:		

- Modelling in likelihood by linear combinations of templates
- $e \rightarrow \gamma$ extrapolation
 - comparison of MC templates w.r.t nominal (data driven)
- Topology:
 - ★ comparison of nominal w.r.t templates from Z→ee, 4 jets
- Hadron template:

 $T_{\rm bkg}^{\rm corr} = \left(\frac{1}{1 - \alpha_{\rm fake} \cdot f}\right) \left[T_{\rm bkg}^{\rm data, \ nom} - \alpha_{\rm fake} \cdot f \times T_{\rm sig}^{\rm data, \gamma}\right]$

• Expressed as combination of templates with/with out the correction for γ leakage

Combined Fit

SPS 2014

 $\sigma_{t\bar{t}\gamma}^{\text{WHIZARD}} = 0.0645 \pm 0.00134 \text{ (stat)} 0.0129 \text{ (theor)pb}$

 $\sigma_{t\bar{t}\gamma}^{\text{MadGraph}} = 0.0621 \pm 0.0010 \text{ (stat)} 0.0124 \text{ (theor)pb}$

Measured cross section:

$$\sigma_{t\bar{t}\gamma}^{\text{fid}} = 0.0692^{+0.013}_{-0.012} (\text{stat})^{+0.019}_{-0.016} (\text{syst}) \pm 0.0012 (\text{lumi}) \text{ [pb]}$$

Sub Channels Estimation

- ndependent results:
- Sub channel independent results:
 - e/μ agreement within statistical uncertainty
- Sub channel theoretical prediction:
 - LO generator calculation in e/µ
 - k-factor Melnikov et Al in µ only
 - Good agreement for both Whizard and Madgraph.
 - Theoretical uncertainty

 - scale variations

Generator	$\sigma^{e,\mathrm{fid}}_{tar{t}\gamma}$ [pb]	$\sigma^{\mu, { m fid}}_{t ar t \gamma} \; [{ m pb}]$
Whizard+Herwig	$0.0668 \pm 0.00191 \text{ (stat)} \pm 0.033 \text{ (theor) pb}$	0.0645 ± 0.00135 (stat) 0.0129 (theor) pb
Madgraph+Herwig	$0.0624 \pm 0.0014 \text{ (stat)} \pm 0.0125 \text{ (theor)pb}$	0.0621 ± 0.00104 (stat) 0.0124 (theor) pb

Conclusions

- Only a brief overview
 - Numerous checks/validations not presented here
 - Profile Likelihood Method, closure tests, etc ...
 - Details of background calculations omitted
- Significance
 - Expected to be at observation level for the $t\overline{t}\gamma$ final state
- Numbers not final!
 - Work in Progress, Publication expected soon
- Measured cross section:
 - Good agreement with NLO calculation with in statistical uncertainties
 - Good agreement with two different generators

Additional Material

Fiducial Fit

SPS 2014

- Fit quality p-value: 0.92 (el) 0.99 (μ)
- Non Fiducial events

scale with observed cross section

iterative procedure

Background:

- + non t $\overline{t} \gamma$ backgrounds
- + non fiducial t $\overline{t} \gamma$

contribution	el + jets	$\mu + \text{jets}$	total
signal	38 ± 11	70 ± 22	109 ± 33
background	95 ± 12	142 ± 15	238 ± 21
expectation Whizard \times k-fact	36.1 ± 1.0	66.9 ± 1.3	137.1 ± 2.3
expectation Madgraph \times k-fact	36 ± 0.9	66.4 ± 1.1	137.65 ± 2.0
total	-	-	347 ± 39
candidates	140	222	362

SPS 2014

Single lepton plus jets

Strategy

- ► $N_{I}(p_{T}(e(\mu)) > 25 (20)) = I, N_{j}(p_{T}(j) > 25) \ge 4,$ $N_{j}(b$ -tag) $\ge I, N_{Y}(E_{T}(Y) > 20 \text{ GeV}) \ge I$
- Photon candidates from rectangular cuts on shower shapes
 - ★ rejection of π⁰, η⁰ → γ γ (main background)
- Photon track isolation as discriminant:
 p²⁰(γ)
 - π^0, η^0 wider showers than prompt γ
 - Data driven templates
 - ♦ photon Z→ee, 4jets
 - hadron control region (C.R.)
- Signal Extraction with profile likelihood on $p_T^{20}(\gamma)$

LHC: top factory machine

- Top Production at LHC:
 - $t \overline{t}$ pairs
 - Single top
- Leading Order diagrams
 - ► $q \overline{q} \rightarrow t \overline{t} (15\% \text{ at } \sqrt{s} = 7 \text{ TeV})$
 - $gg \rightarrow t \overline{t}$ (85% at $\sqrt{s} = 7 \text{ TeV}$)

- Top production per experiment
 - ▶ 5 fb⁻¹ \sqrt{s} = 7 TeV and 20 fb⁻¹ \sqrt{s} =8 TeV
 - 5.6× $10^6 t \overline{t}$ events for
 - ▶ 2.7 × 10⁶ Single top events

proton - (anti)proton cross sections

Top Decay Modes

时 14%

Motivations for Top Physics

- Probe Standard Model
 - top mass measurement
 - top EM couplings: $t \overline{t}\gamma, t \overline{t}Z$
 - Single Top production
- Precise tests of perturbative QCD
- Important background for many searches
 - New physics: SUSY, ..
 - Higgs searches in: t TH, ...
- Searches for new physics:
 - vector like heavy new quarks

Top Decay Modes

19 4%

