

Observation of photon polarization in the b \rightarrow **s** γ **transition**

Giovanni Veneziano

SPS Annual Meeting 2014 2014 CHIPP Annual Plenary Meeting and PhD/PostDoc Days Fribourg, 01/07/2014

• Study of photon polarization

 \checkmark First observation of photon polarization in the b \rightarrow sy transition

✓ Toward the determination of $λ_γ$

• Conclusions

The LHCb detector

• LHCb is a forward detector $(2 < \eta < 5)$ designed to study *b* physics

- ✓ Very precise vertex location ($\sigma_{IP} = 20 \ \mu m$)
- ✓ Excellent tracking resolution ($\Delta p/p = 0.4 0.6$ %)
- ✓ Very good PID performances

✓ High-granularity calorimeter for photon reconstruction

 \checkmark Three-step trigger reducing the rate to 5 kHz

The LHCb detector

• LHCb is a forward detector $(2 < \eta < 5)$ designed to study b

- ✓ Excellent tracking resolution ($\Delta p/p = 0.4 0.6$ %)
- ✓ Very good PID performances
- ✓ High-granularity calorimeter for photon reconstruction
- \checkmark Three-step trigger reducing the rate to 5 kHz

The LHCb detector

• LHCb is a forward detector $(2 < \eta < 5)$ designed to study *b* physics

- FI I I I I I I I
- ✓ A total luminosity of ~ 3 fb⁻¹ has been recorded during LHC run I
- ✓ A luminosity upgrade is foreseen during the long shutdown of 2018-2019

• Introduction to LHCb

• Study of photon polarization

✓ First observation of photon polarization in the b → sγ transition

✓ Toward the determination of $λ_γ$

• Conclusions

Motivation

• $b \rightarrow s\gamma$ transitions happen through FCNC penguin loops

• New Physics (NP) effects can affect the angular variables

 $\checkmark b \rightarrow s\gamma$ photons are left-handed in the SM

✓ NP models (*e.g.* MSSM) predict a large right-handed component

✓ photon polarization λ *γ* is affected

 $\checkmark \lambda_{\gamma}$ has not been measured yet

$$\lambda_{\gamma} \equiv \frac{|c_R|^2 - |c_L|^2}{|c_R|^2 + |c_L|^2}$$

 $c_{L,R}$ are the $b \rightarrow s \gamma_{L,R}$ amplitudes

Measuring the polarization

- Various (complementary) methods have been proposed for the determination of λ_{γ}
 - ✓ Time-dependent analyses of $B_{(s)} \rightarrow f^{CP} \gamma$ (*e.g.* $B_s \rightarrow \phi \gamma$, $B^0 \rightarrow K_S \pi^0 \gamma$)
 - ✓ Transverse asymmetry in $B^0 \rightarrow K^*l^+l^-$
 - ✓ Angular distributions of b-baryons: (*e.g.* $\Lambda_b \to \Lambda^{(*)}\gamma$, $\Xi_b \to \Xi^{(*)}\gamma$)
 - ✓ Angular distribution of radiative decays with three charged particles in the final state (*e.g.* $B^{\pm} \rightarrow K^{\pm} \pi^{\mp} \pi^{\pm} \gamma$)

Theory

• The decays $B^{\pm} \to K^{\pm} \pi^{\mp} \pi^{\pm} \gamma$ are studied

• The decay rate reads

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} \propto \sum_{i=0,2,4} a_i \cos^i\theta + \lambda_\gamma \sum_{j=1,3} a_j \cos^j\theta$$

• The up-down asymmetry

$$\mathcal{A}_{ud} \equiv \frac{\int_{0}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^{0} d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta}}$$

$$\checkmark \text{ proportional to } \lambda\gamma$$

 $\vec{p}_{\pi,\text{fast}}$

p_K

 $\vec{p}_{\pi,slow} \times \vec{p}_{\pi,fast}$

 $\vec{p}_{\pi,slow}$

Theory

• Up-down asymmetry originates from the interference between √ intermediate resonance amplitudes

> $K_1(1270)^+ \to K^*(892)^0 \pi^+$ $\to \rho(770)K^+$

 \checkmark *S*- and *D*-wave amplitudes

$$K_1(1270)^+ \to K^*(892)^0 \pi^-$$

 $J^P: 1^+ \to 1^- 0^-$

L = 0, 2

 \checkmark two intermediate $K^*\pi$ with different charges

$$K_{1}(1270)^{0} \to K^{*}(892)^{0}\pi^{0}$$

$$\to K^{*}(892)^{+}\pi^{-}$$
Gronau *et al.*, PRL88 (2002) 051802

 $\vec{p}_{\pi,slow}$

 $\vec{p}_{\pi,fast}$

p_K[▲]

 $\vec{p}_{\pi,slow} \ x \ \vec{p}_{\pi,fast}$

event selection

pre-selection

Track IP χ^2	> 16	
Max track $p_{\rm T}$	> 1200	MeV/c
Min track $p_{\rm T}$	> 500	MeV/c
$K \operatorname{Prob}(K)^*(1-K \operatorname{Prob}(\pi))$	> 0.2	
$\pi^+ \operatorname{Prob}(\pi^+)^*(1 - \pi^+ \operatorname{Prob}(K))$	> 0.2	
$\pi^- \operatorname{Prob}(\pi^-)^*(1\text{-}\pi^- \operatorname{Prob}(K))$	> 0.2	
$K^+\pi^-\pi^+$ vertex isolation χ^2	> 2	
$K_{\rm res}$ vertex χ^2	< 20	
B mass-constrained $m_{K^+\pi^-\pi^+}$ mass window	[1100, 1900]	MeV/c^2
Photon $E_{\rm T}$	> 3000	MeV
Photon CL	> 0.25 and $\neq 0.5$	
$Photon/\pi^0$ separation	> 0.6	
$B p_{\mathrm{T}}$	> 2500	MeV/c
B vertex χ^2	< 20	
$B \text{ IP } \chi^2$	< 20	
$K^+ \pi^- \pi^0$ mass	> 2000	MeV/c^2
$\pi^+ \pi^0$ mass	> 1100	MeV/c^2
Fiducial cut on $ p_x $	$\leq 0.317(p_z - 2400)$	MeV/c

boosted decision tree

- Full mass fit
 - ✓ 3 fb⁻¹ of data
 - $\checkmark \sim 14,000$ signal events
 - ✓ the background-subtracted Kππ mass spectrum is determined
 - ✓ the distribution of signal events in bins of cosθ in four M_{Kππ} intervals is obtained

J	K	Mass	Width
1+	K1(1270)	1272 ± 7	90 ± 20
	K1(1400)	1403 ± 7	174 ± 13
1-	K*(1410)	1414 ± 15	232 ± 21
	K*(1680)	1717 ± 27	322 ± 110
2+	K*2(1430)	1426 ± 2	99 ± 3
2-	K2(1770)	1773 ± 8	186 ± 14
	K2(1820)	1816 ± 13	276 ± 35

[LHCb collaboration, PRL 112, 161801 (2014)]

LHCb

(20 MeV/c²) 2000 2000 2000

• Angular distribution fit

✓ 4th-order function of Legendre polynomials

• Angular distribution fit

✓ 4th-order function of Legendre polynomials

$$f(\cos\hat{\theta}; c_0 = 0.5, c_1, c_2, c_3, c_4) = \sum_{i=0}^{1} c_i L_i(\cos\hat{\theta})$$

 \checkmark up-down asymmetries are calculated

• This result has renewed the interest of the scientific community

- In order to achieve the first measurement of $\lambda \gamma$, a Dalitz analysis will be performed
- The mass distributions of the final $\pi\pi$, $K\pi$ and $K\pi\pi$ states will be exploited to build a multidimensional Dalitz plot, allowing us to study the interferences between the resonances peaking in the $K\pi\pi$ mass interval, \mathfrak{F}_3 interest $F_r(m_{12}^2, m_{23}^2)$
- Once the resonances contributions are separated, a resonance by resonance A_{ud} will be calculated

- Introduction to LHCb
- Study of photon polarization

 \checkmark First observation of photon polarization in the b \rightarrow s γ transition

✓ Toward the determination of $λ_γ$

Giovanni Veneziano

Backup

Photon polarization at LHCb

• Photon polarization can be inferred from the kinematic distribution of the *hhh* three-body decay

- It requires three bodies to form a parity-odd triple product $\vec{p}_{\gamma} \cdot (\vec{p}_1 \times \vec{p}_2)$
- The sign of the triple product identifies the photon polarization

• The photon angle ϑ is defined as the angle between $-\mathbf{p}\gamma$ and the normal to the plane defined by $\mathbf{p}_{slow} \times \mathbf{p}_{fast}$

• A loose preselection is applied after the Stripping selection

Track IP χ^2	> 16	
Max track $p_{\rm T}$	> 1200	MeV/c
Min track $p_{\rm T}$	> 500	MeV/c
$K \operatorname{Prob}(K)^*(1-K \operatorname{Prob}(\pi))$	> 0.2	
$\pi^+ \operatorname{Prob}(\pi^+)^*(1-\pi^+ \operatorname{Prob}(K))$	> 0.2	
$\pi^- \operatorname{Prob}(\pi^-)^*(1\text{-}\pi^- \operatorname{Prob}(K))$	> 0.2	
$K^+\pi^-\pi^+$ vertex isolation χ^2	> 2	
$K_{\rm res}$ vertex χ^2	< 20	
B mass-constrained $m_{K^+\pi^-\pi^+}$ mass window	[1100, 1900]	MeV/c^2
Photon $E_{\rm T}$	> 3000	MeV
Photon CL	> 0.25 and $\neq 0.5$	
Photon/ π^0 separation	> 0.6	
$B p_{\mathrm{T}}$	> 2500	MeV/c
B vertex χ^2	< 20	
$B \text{ IP } \chi^2$	< 20	
$K^+ \pi^- \pi^0$ mass	> 2000	MeV/c^2
$\pi^+ \pi^0$ mass	> 1100	MeV/c^2
Fiducial cut on $ p_x $	$\leq 0.317(p_z - 2400)$	MeV/c

• A multivariate approach is used to discriminate between signal and background

• A Boosted Decision Tree (BDT) is used

- Background (data sidebands) and signal (MC) for our BDT variables
- variables that may be not well described by MC have not been added in the BDT (pre-selection)

- BDT performance
 - response and overtraining

- Angular distribution fit
 - \checkmark the fit parameters c_i are determined

	[1.1, 1.3]	[1.3, 1.4]	[1.4, 1.6]	[1.6, 1.9]	GeV/c^2
c_1	6.3 ± 1.7	5.4 ± 2.0	4.3 ± 1.9	-4.6 ± 1.8	x 10-2
c_2	31.6 ± 2.2	$27.0{\pm}2.6$	43.1 ± 2.3	28.0 ± 2.3	x 10 ⁻²
c_3	-2.1 ± 2.6	$2.0{\pm}3.1$	-5.2 ± 2.8	-0.6 ± 2.7	x 10-2
c_4	3.0 ± 3.0	6.8 ± 3.6	8.1 ± 3.1	-6.2 ± 3.2	x 10-2
$\overline{\mathcal{A}}_{\mathrm{ud}}$	6.9 ± 1.7	4.9 ± 2.0	5.6 ± 1.8	-4.5 ± 1.9	x 10 ⁻²

- The systematical uncertainties are given by
 - the choice of the fit model
 - different shapes are used to describe signal and bkg
 - the error is assigned as the difference between the results of the nominal fit and the systematics one
 - fixing parameters from simulation
 - the parameters fixed from simulation are generated gaussianly around the nominal fit value accounting for their correlations
 - the fit is performed many times using these sets of values
 - the uncertainty is obtained using the central interval criterion at 90% CL

- The systematical uncertainties are given by
 - bin migration
 - some events may migrate from one bin to the next one because of the detector resolution
 - pseudo-experiments are generated according to the distribution, then smeared with the resolution
 - the bin-by-bin differences in yield between the smeared and nonsmeared datasets are used to describe the covariance matrix for such systematics

