

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Current Status of MicroBooNE

Matthias Lüthi

Universität Bern Laboratorium für Hochenergiephysik (LHEP)

I. LSND Experiment

UNIVERSITÄT BERN

- Found excess signal at low L/E

I. MiniBooNE Anomaly

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- $V_{\mu} \rightarrow V_{e}$ appearance
- A liquid scintillator detector
- Short-baseline (541m from source)

3

• Found excess signal

$u^{\scriptscriptstyle b}$

2.TPC Principles

UNIVERSITÄT BERN

2. Why use liquid argon?

UNIVERSITÄT BERN

- Dense (1.4 g/cm³)
- Abundant (1% of the atmosphere)
- Ionization yield of 5500 e/mm for a MIP
- Promt Scintillation (ns)
- Liquid at 87K

2. Liquid Argon TPC Performance

UNIVERSITÄT BERN

- 2.5m x 2.3m x 10.2m liquid Argon TPC
- 80t fiducial volume
- 2.5m drift length
- 3 wire planes 0° ±60°
- 3mm wire pitch
- 36 8" Photomultipliers
- Located in the BNB at Fermilab

UNIVERSITÄT BERN

- 2.5m x 2.3m x 10.2m liquid Argon TPC
- 80t fiducial volume
- 2.5m drift length
- 3 wire planes 0° ±60°
- 3mm wire pitch
- 36 8" Photomultipliers
- Laser Calibration System

UNIVERSITÄT BERN

- 2.5m x 2.3m x 10.2m liquid Argon TPC
- 80t fiducial volume
- 2.5m drift length
- 3 wire planes 0° ±60°
- 3mm wire pitch
- 36 8" Photomultipliers
- Laser Calibration System

UNIVERSITÄT BERN

- 2.5m x 2.3m x 10.2m liquid Argon TPC
- 80t fiducial volume
- 2.5m drift length
- 3 wire planes 0° ±60°
- 3mm wire pitch
- 36 8" Photomultipliers
- Laser Calibration System

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

UNIVERSITÄT BERN

- 2.5m x 2.3m x 10.2m liquid Argon TPC
- 80t fiducial volume
- 2.5m drift length
- 3 wire planes 0° ±60°
- 3mm wire pitch
- 36 8" Photomultipliers
- Laser Calibration System

UNIVERSITÄT BERN

- 2.5m x 2.3m x 10.2m liquid Argon TPC
- 80t fiducial volume
- 2.5m drift length
- 3 wire planes 0° ±60°
- 3mm wire pitch
- 36 8" Photomultipliers
- Laser Calibration System

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

16

D UNIVERSITÄT BERN

- 2.5m x 2.3m x 10.2m liquid Argon TPC
- 80t fiducial volume
- 2.5m drift length
- 3 wire planes 0° ±60°
- 3mm wire pitch
- 36 8" Photomultipliers
- Laser Calibration System

4. Physics: e/γ separation

UNIVERSITÄT BERN

3. Conclusion

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- MicroBooNE will determine the origin of the MiniBooNE low energy signal excess
- MicroBooNE will perform cross-section measurements
- MicroBooNE will provide valuable R&D towards kilo-ton scale LAr TPCs
- MicroBooNE will start data taking end of the year

 MicroBooNE together with a far and near detector could bring light into the short-baseline neutrino anomalies

Thank You

UNIVERSITÄT BERN

I. LSND and MiniBooNE Anomaly

UNIVERSITÄT BERN

4. Physics: Oscillation

$u^{\scriptscriptstyle ho}$

UNIVERSITÄT BERN