Hadron production measurements from NA61/SHINE

Alexander Korzenev, Geneva University on behalf of the NA61/SHINE collaboration

SPS Annual Meeting Fribourg, July 2014

Outline

- Introduction
- Hadron cross section measurements
- Results on the T2K replica target

Few examples

Hadron production experiments

neutrino experiments

HARP, CERN-PS214 1.5-15 GeV beam (Mini-, Sci-, Micro-)BooNE at Fermilab K2K (KEK to Super-Kamiokande)

NA20 & SPY/NA56, SPS 400-450 GeV beam WANF (NOMAD, CHORUS)
CNGS (OPERA, ICARUS)

NA49, CERN-SPS 160 GeV beam

NuMI beamline in Fermilab (MINOS, MINERvA, NOvA)

MIPP, FNAL-E907 120 GeV beam

NA61/SHINE CERN-SPS 13-400 GeV beam T2K (JPARC to Super-Kamiokande)
NuMI (MINOS+,MINERvA, NOvA)
LBNE, LBNO, T2HK

Normally results of several hadron production experiments are used

SPS Heavy Ion and Neutrino Experiment

- NA61/SHINE has been approved in 2007
- Successor of NA49, situated at H2 beamline of CERN SPS
- Secondary beam particles produced from 400 GeV SPS's protons
 - Momentum range 13-400 GeV/c
- PID of beam protons by CEDAR and Cherenkov threshold conter
- 4 large volume TPCs (+1 small TPC) for tracking of secondary particles
- Particle identification by ToF & dE/dx

Summary of data collected by **NA61** for **T2K** (graphite target)

beam	target	year	stat.x10 ⁶	Status of analysis	The T2K beam MC
	The thin target	2007	0.7	published: π^{\pm} , K^{+} , K^{0}_{S} , Λ	is used
protons at	2cm (0.04λ _ι)	2009	5.4	prelim: π^{\pm} , K^{\pm} , p, K^{0}_{S} , Λ	to be used in 2014
31 GeV/c	the T2K replica	2007	0.2	published: π [±]	method developed
	target 90 cm (1.9λ _ι)	2009	2.8	to be released in 2014	-
		2010	~10	under calibration	-

SPS Heavy Ion and Neutrino Experiment

- NA61/SHINE has been approved in 2007
- Successor of NA49, situated at H2 beamline of CERN SPS
- Secondary beam particles produced from 400 GeV SPS's protons
 - Momentum range 13-350 GeV/c
- PID of beam protons by CEDAR and Cherenkov threshold conter
- 4 large volume TPCs (+1 small TPC) for tracking of secondary particles
- Particle identification by ToF & dE/dx

Summary of data collected by **NA61** for **T2K** (graphite target)

	,		,	`J	J
beam	target	year	stat.x106	Status of analysis	The T2K beam MC
	The thin target	2007	0.7	published: π^{\pm} , K^{+} , K^{0}_{S} , Λ	is used
protons at	2cm (0.04λ _ι)	2009	5.4	prelim: π^{\pm} , K^{\pm} , p, K^{0}_{S} , Λ	to be used in 2014
31 GeV/c	the 12K replica	2007	0.2	published: π^{τ}	method developed
	target 90 cm (1.9λ,)	2009	2.8	to be released in 2014	-
	(±.5%)	2010	~10	calibration	-

_

- New NA61 results based on data 2009. Precision improved by a factor 2-3 as compared to the pilot data 2007 (used so far by T2K)
- Typical uncertainty for regions which are important for v flux is ~4%
- Recent versions of FTF_BIC describe data reasonably

- New NA61 results based on data 2009. Precision improved by a factor 2-3 as compared to the pilot data 2007 (used so far by T2K)
- Typical uncertainty in a central region is ~15%
- Recent versions of FTF_BIC describe data reasonably

NA61 data in the TZK experiment

Red: parent produced in target **Blue**: parent produced outside the target

Hadronic interaction in the target are modeled with FLUKA, outside the target with GEANT3 (GCALOR)

Main set of hadron production data

Major	part of the	T2K phase	space

For forward kaons

For tertiary pions

Experiment	Beam p[GeV/c]	Target	Particle
NA61/SHINE	31	С	π [±] , K [±] , p
Eichten <i>et al.</i>	24	Be, Al,	p, π [±] , K ⁺
Allaby <i>et al.</i>	19.2	Be, Al,	p, π [±] , K [±]
E910	6.4-17.5	Be	π^{\pm}
	NA61/SHINE Eichten et al. Allaby et al.	NA61/SHINE 31 Eichten et al. 24 Allaby et al. 19.2	NA61/SHINE 31 C Eichten et al. 24 Be, Al, Allaby et al. 19.2 Be, Al,

- Interaction chain for hadrons is stored, to be weighted later with real measurements
- Tuning of tertiary pions requires extrapolation from NA61 data
 - Extrapolation to different incident nucleon momenta is done assuming Feynman scaling (x_E=p_I/p_I max)
 - Extrapolation from carbon to aluminum using

$$E\frac{d^3\sigma(A_1)}{dp^3} = \left[\frac{A_1}{A_0}\right]^{\alpha(x_F, p_T)} E\frac{d^3\sigma(A_0)}{dp^3}$$

- Two years of datataking with a thin target: 2007 and 2009
- Statistics of 2009 is an order of magnitude higher as compared to 2007
- The phase space of T2K is well covered by NA61

Tuning of v_u flux using NA61 spectra

 Pion multiplicity re-weighing has the largest effect at low energies, while the kaon multiplicity re-weighting is important at high energies.

Total flux uncertainty is dominated by the hadron interaction uncertainties

Alternative approach to the v flux prediction in TZK

- Hadron multiplicities are parametrized at the target surface (no vertex reconstruction)
- Analysis in bins of (p, θ, z)
- Re-weighting multiplicities of hadrons exiting the target in the T2K beam simulation
- Model dependence is reduced down to 10% as compared to 40% in the standard approach

- Analysis of pilot data 2007 (method, results and application) is published
- Main statistics is data 2009 (analysis is ongoing) and 2010 (under calibration)

Conclusion

- Neutrino flux uncertainty is a bottleneck in the analysis of v data ⇒ precision hadroproduction measurements is a mandatory part of the procedure
- Traditional approach for the ν flux constraint: re-weighting the parent hadron multiplicity at the interaction vertex
 - NA61 data for T2K at 31 GeV/c (datasets 2007, 2009)
 - ◆ Present neutrino flux uncertainty in T2K is ~12%
- The T2K replica target measurements:
 - NA61 data for T2K at 31 GeV (dataset 2007)
 - Reduction of model dependent uncertainties

Outlook

- Completion of the analysis of the T2K replica target data (2009, 2010)
- Extensive physics program is foreseen for NuMI energies (60-120 GeV) starting from the fall of 2015

Measurements for the NuMI target

- The goal is similar to the one for T2K (cross section + replica target)
- LBNE, MINOS(+), NOVA, MINERVA
- US group has been approved for limited membership at the beginning of 2012. Full members in 2014
- 22 physicists from 8 US institutions
- Pilot run in summer 2012
 - 120 GeV/c proton beam + C target
 - Non-standard magnet configuration
 - 3.5 millions triggers recorded
 - Calibration is in progress
- DOE proposal to be submitted this summer
 - Upgrade of electronics (Pittsburgh)
 - Forward tracking (Colorado)
 - Request for 3-4 weeks of beam time (60, 90, 120 GeV/c, 3-4 targets)

NuMI target

Assumed systematic uncertainties

- Beam flux + near detector constraint
 - Conservatively assumed to be the same
- Cross section uncertainties not constrained by ND
 - Nuclear difference removed assuming water measurements
- Far detector
 - Reduced by increased statistics of atmospheric V control sample

Uncertainty on the expected number of events at Hyper-K (%)

	νm	ode	anti-V mode	
	Ve	νμ	Ve	νμ
Flux&ND	3.0	2.8	5.6	4.2
XSEC model	1.2	1.5	2.0	1.4
Far Det. +FSI	0.7	1.0	1.7	1.1

(T2K	2014)
Ve	νμ
3.1	2.7
4.7	5.0
3.7	5.0
6.8	7.6

• Further reduction by new near detectors under study

Masashi Yokoyama (UTokyo)

The future Japanese neutrino program, SWAPS2014

17

Analysis techniques (data 2007)

- 1) h^- analysis: analysis of π^- via measurements of negatively charged particles
- 2) dE/dx analysis at $p \le 1$ GeV/c: π^{\pm} and protons were identified via energy loss in TPC
- 3) ToF-dE/dx analysis at p≥1GeV/c: information from dE/dx and ToF is combined to identify π[±], K[±] and protons

Data 2009

Energy loss in TPC (dE/dx)

Time-of-Flight (ToF)

Production cross section and normalization

- Results obtained in 2007 and 2009 can be considered as two independent experiments
 - Scaler information from special (non-physics) run for 2007
 - Prescaled beam trigger in physics run for 2009

$$\sigma_{\mathit{prod}}\!=\!\sigma_{\mathit{total}}\!-\!\sigma_{\mathit{el.}}\!-\!\sigma_{\mathit{quasi}\,-\mathit{el.}}$$

• Contributions from $\sigma_{el.}$ and $\sigma_{quasi-el.}$ have been estimated with GEANT4

$$\sigma_{prod}^{2007} = 229.3 \pm 1.9 (stat.) \pm 9.0 (syst.) mb$$

$$\sigma_{prod}^{2009} = 233.5 \pm 2.8 (stat.) \pm 4.2 (model) \pm 1.0 (trigger) mb$$

- Total uncertainty decreased 4% → 2%
- Used to normalize hadron cross sections to be able to compare to MC models $\frac{dn}{dn} = \frac{d\sigma}{dn}$

$$\frac{d n_{\alpha}}{dp} = \frac{1}{\sigma_{prod}} \frac{d \sigma_{\alpha}}{dp}$$

New results on proton and K_s^0 multiplicity in pC @ 31 GeV/c

 To be used in the T2K beam simulation to decrease the systematics due to the secondary nucleon production

To be used in the π analysis of NA61 to reduce the feed-down uncertainty. Presently discrepancy between FLUKA and VENUS introduces the error ~10% at low momenta

Statistical and systematic errors

- Statistical uncertainty data 2009 vs. 2007
 improved by a factor 2-3
- Systematic error from analysis of data 2007
 ⇒ an upper limit. To be improved
- Possible improvement:
 - PID error can be smaller due to larger statistics
 - Uncertainty on feed down correction can be smaller once V0 is measured in NA61

Normalization and σ_{prod} measurement

Results

Trigger cross section:
 agreement within 1σ
 with 2007 measurement

 $\sigma_{\textit{Trig}} = 305.7 \pm 2.7 (\textit{stat})^{+1.0}_{-1.2} (\textit{syst}) \; \text{mb}$

$$\sigma^{2007}_{\mathit{Trig}} = 298.1 \pm 1.9 (\mathit{stat}) \pm \underline{7.3 (\mathit{syst})} \; \mathsf{mb}$$

Davide Sgalaberna

- lacktriangle Inelastic cross section: $\sigma_{inel} = \sigma_{trig} \sigma_{el-Out\ of\ S4} + \sigma_{loss-p} + \sigma_{loss-\pi/K}$
- σ_{el-Out}: el-scattering outside the acceptance of the interaction trigger counter (S₄)
- σ_{loss-x}: forward produced hadrons hitting S₄

$$\sigma_{\mathit{inel}} = 261.3 \pm 2.8(\mathit{stat}) \pm 2.2(\mathit{model})^{+1}_{-1.2}(\mathit{trigger}) \; \mathsf{mb}$$

igspace Production cross section: $\sigma_{prod} = \sigma_{inel} - \sigma_{qe}$

Correction were estimated with GEANT4

$$\sigma_{prod} = 233.5 \pm 2.8 (stat) \pm 4.2 (model)^{+1}_{-1.2} (trigger)$$
 mb

$$\sigma_{prod}^{2007} = 229.3 \pm 1.9(stat) \pm 9.0(syst)$$
 mb

Normalization analysis is completed

Total uncertainty from 4% (2007) to 2%

Technique of combined ToF- dE/dx analysis

- product of Gaussian functions in m^2 and dE/dx
- For each (p,θ) bin the maximum likelihood method was applied to fit the shape
- Uncertainty associated to the unknown functional form is a dominant contribution to the systematic error at $p \ge 2 \text{ GeV/}c$

New results on K⁺ multiplicity in pC @ 31 GeV/c

- Agreement with published K⁺ cross section
 - Statistics (and total error) improve by a factor 3
- At large momenta K⁺ is totally under the proton peak ⇒ additional systematics
- K are shown for the first time. Analysis with data 2007 was not possible due to low statistics

New results on K- multiplicity in pC @ 31 GeV/c

- Agreement with published K⁺ cross section
 - Statistics (and total error) improve by a factor 3
- At large momenta K⁺ is totally under the proton peak ⇒ additional systematics
- K⁻ are shown for the first time. Analysis with data 2007 was not possible due to low statistics

Relative uncertainties for π^{-} (data 2007)

- Among 3 analyzes the one with smaller total error was selected
- Systematic error dominates at lower momenta. At higher momenta stat. error is larger

Multiplicities for K+

- Agreement with published K⁺ cross section
- At large momenta K⁺ is totally under the proton peak ⇒ Proper multi-gaussian fit of dE/dx is needed

Syst. error & correction factors for π^- analysis (data 2007)

Data 2009 vs. 2007

- RST: tracks which scatter in the direction of bending in the magnetic field
- WST: tracks which scatter with an angle opposite to the direction of bending

- Wider TOF-F => wider momentum interval at large scattering angles
- In the published analysis of 2007 the Gap TPC was not used (calibration was not ready at that time). Presently used in combination with MTPC
- Forward region can be fully covered by tracks reconstructed in the Gap TPC only.
 However without MTPC hits PID will not be available

Derivation of spectra

$$\frac{d\sigma_{\alpha}}{dp} = \frac{\sigma_{trig}}{1 - \epsilon} \left(\frac{1}{N^{\frac{in}{n}}} \frac{\Delta n_{\alpha}^{in}}{\Delta p} - \frac{\epsilon}{N^{\frac{out}{n}}} \frac{\Delta n_{\alpha}^{out}}{\Delta p} \right)$$

$$\frac{d n_{\alpha}}{dp} = \frac{1}{\sigma_{prod}} \frac{d \sigma_{\alpha}}{dp}$$

• Statistics for target 'in' and 'out'
$$N^{in} = 2.5 \cdot 10^6, \quad N^{out} = 0.1 \cdot 10^6$$

•
$$\sigma_{trig} = 305.7 \pm 2.7 \pm 1.2 \text{ mb}$$

•
$$\varepsilon = P^{out}/P^{in} = 0.123 \pm 0.004$$

•
$$\sigma_{prod} = 233.5 \pm 2.8 \pm 4.2 \pm 1.2 \text{ mb}$$

27

Update on physics lists

Composition of physics lists for proton interaction as a function of the energy

Now with VMC 2.15 (Geant4.10)

BIC: Binary Cascade Model

Bertini: Bertini Model FTF: Fritiof Model

QGS: Quark Gluon String

LHEP: Low and High Energy Parametrized REMOVED

-P: Precoumpound

-B: BIC