

Felix Berg - on behalf of the Mu3e Collaboration

Outline

≻ Mu3e:

- CLFV
- Signal
- The detector

Compact Beam Line:

- Beam Line Overview
- Full Beamline
- Short Version

Conclusions

CLFV decay $\mu^+ \rightarrow e^+ e^- e^+$

• Search for BSM physics

High energy frontier

High intensity frontier

• $\mu^+ \rightarrow e^+ e^- e^+$

Experimental signature of $\mu^+ \rightarrow e^+ e^- e^+$

- Same Vertex
- Coincidence
- Stopped muon decays

$$\sum_{i} \overrightarrow{p_i} = 0 \qquad \qquad \sum_{i} E_i = m_{\mu} c^2$$

Momentum calculated from track bending radius in B-Field

The Mu3e Experiment

PSI - PiE5 area

Mu3e phase I

Compact Beam Line

TRANSPORT

G4Beamline

Compact Beam Line – Short Version

Compact Beam Line – Short Version

Compact Beam Line – Short Version

	Transmission (solenoid entrance)	On target r = 15 (beam pipe Ø=60)	On target r = 15 / 10 (without beam pipe)
Full version	70 % (1 st QP PiE5)	-	-
Short version	88 % (intermediate focus)	37 %	52 %

- Can achieve ~ 90 % transmission (O $10^8 \mu^+/s$) to solenoid
- Initial experimental phase requires compact inner Si detectors \rightarrow means target $\emptyset \leq 30$ mm & small diameter beam tube
- Allows max. target acceptance of ~ 37 %

Conclusion

- > Mu3e experiment will push forward search for physics BSM with an aimed sensitivity reach of $\mathcal{O}(10^{-16})$
- Staged approach to experiment:
 - ➢ phase I → Compact Beamline
 - ➢ phase II → High Intensity Muon Beamline
- Simulation Tools TRANSPORT, TURTLE, G4BL validated
- Baseline solution for Beamline layout matching spatial constraints achieved
- > Order 10⁸ μ ⁺/s transmission to solenoid
- ➤ Current experimental setup → 37 % target acceptance @ 100 % stopping efficiency
- Beamline test setup without solenoid end 2014

Additional Slides – max. Acceptance

Simple straight beamline allows to estimate max target acceptance

Optimize on target

\rightarrow 57 % on target @ 68 % acceptance is the optimum

Additional Slides - Optimization

•13