

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Muonium production for fundamental physics experiments

Kim Siang Khaw

Group for Precision Physics at Low Energy, IPP, ETH Zurich (www.edm.ethz.ch)

Motivation

Improve fundamental precision measurements with muon (μ^+) and muonium (Mu), which are limited by statistics and beam quality. Our approaches:

- (a) Develop a novel positive muons beam line
- ightharpoonup phase space compression of 10^{10}
- ► sub-eV energies and sub-mm beam size

(poster no. 375 of A. Eggenberger and no. 376 of G. Wichmann)

- (b) Optimize μ^+ to Mu conversion using
- porous silica materials

Precision measurements

Next generation experiments with new μ^+ and Mu beams:

- ► Precision Mu spectroscopy
- ► Search for Mu-Mu oscillations
- ► Search for muon electric dipole moment
- ▶ Precision measurement of $(g-2)_{\mu}$

Muonium spectroscopy

Spectroscopy of the 1S-2S transition and HFS:

- ▶ test bound-state QED free of hadronic effects
- $ightharpoonup m_{\mu}$ and μ_{μ} determination [essential for (g-2)_{μ}]
- ► test of lepton and charge universality
- ► antimatter gravity via seasonal changes

Experimental setup

- ▶ We have used the **low energy positive muon beam** (LEM) [NIM A 595, 317 (2008)] at PSI. (4000 s⁻¹ μ ⁺ on the sample, 1-30 keV tunable energy)
- Positrons from muon decay are detected by plastic scintillators (upstream and downstream, each of them is segmented into top, bottom, left and right).

Collaborations and funding

Antognini, Crivelli, Kirch, Piegsa (ETH Zurich) Morenzoni, Prokscha, Salman (LMU, PSI)

This work is supported by the SNF grant 200020_146902.

Muon spin rotation (μ SR) technique

Muonium formation rate, F_{Mu} can be extracted using this technique.

The time spectra measured in each individual segment follow the **exponential muon decay distribution**, modulated at the **Larmor frequency** in the external field:

$$N(t) = N_0 e^{-t/\tau} [1 + A_{\mu}(t) + A_{\text{Mu}}(t)] + B$$
$$A_{\mu}(t) = A_{\mu} e^{-\lambda_{\mu} t} \cos(\omega_{\mu} t - \phi_{\mu})$$

$$A_{\mathrm{Mu}}(t) = A_{\mathrm{Mu}}e^{-\lambda_{\mathrm{Mu}}t}\cos(\omega_{\mathrm{Mu}}t - \phi_{\mathrm{Mu}})$$

 N_0 : normalization, au : muon lifetime, B : background

 $A_{\mu}(t)$ and $A_{\mathrm{Mu}}(t)$: precession amplitudes at frequencies ω_{μ} for free μ^+ and ω_{Mu} for Mu ϕ_{μ} and ϕ_{Mu} : initial phases, λ_{μ} and λ_{Mu} : damping coefficients.

Raw time spectrum

Evolution of μ^+ spin at 6 G

Evolution of Mu spin at 6 G

- $ightharpoonup F_{\mathrm{Mu}}$ is calculated from the **fitted amplitudes** A_{μ} and A_{Mu} .
- ▶ We obtained $F_{\text{Mu}} = (60 \pm 2)\%$ for porous SiO₂ and $(80 \pm 4)\%$ for Suprasil (Reference sample, no Mu emission into vacuum).

Positron shielding technique

We developed a new approach to extract the fraction of Mu emitted into vacuum.

- $\blacktriangleright \mu/\text{Mu}$ decays inside the sample \rightarrow exponential decay.
- ightharpoonup Mu emitted into vacuum ightarrow deviation from exponential decay.
- ▶ With **GEANT4** simulation, we extracted the fraction of Mu emitted into vacuum.

Towards 1S-2S measurement - a muonium trapping cell

Simulated time spectra for different height

- ▶ To increase the laser-Mu interaction time \rightarrow trap Mu atoms!
- ▶ Cryogenic tests done at 77 K for the 50 nm thin SiN multi-window.
- ▶ Upcoming beam time: summer 2014