Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich # Muonium production for fundamental physics experiments Kim Siang Khaw Group for Precision Physics at Low Energy, IPP, ETH Zurich (www.edm.ethz.ch) #### **Motivation** Improve fundamental precision measurements with muon (μ^+) and muonium (Mu), which are limited by statistics and beam quality. Our approaches: - (a) Develop a novel positive muons beam line - ightharpoonup phase space compression of 10^{10} - ► sub-eV energies and sub-mm beam size (poster no. 375 of A. Eggenberger and no. 376 of G. Wichmann) - (b) Optimize μ^+ to Mu conversion using - porous silica materials #### **Precision measurements** Next generation experiments with new μ^+ and Mu beams: - ► Precision Mu spectroscopy - ► Search for Mu-Mu oscillations - ► Search for muon electric dipole moment - ▶ Precision measurement of $(g-2)_{\mu}$ # **Muonium spectroscopy** Spectroscopy of the 1S-2S transition and HFS: - ▶ test bound-state QED free of hadronic effects - $ightharpoonup m_{\mu}$ and μ_{μ} determination [essential for (g-2)_{μ}] - ► test of lepton and charge universality - ► antimatter gravity via seasonal changes #### **Experimental setup** - ▶ We have used the **low energy positive muon beam** (LEM) [NIM A 595, 317 (2008)] at PSI. (4000 s⁻¹ μ ⁺ on the sample, 1-30 keV tunable energy) - Positrons from muon decay are detected by plastic scintillators (upstream and downstream, each of them is segmented into top, bottom, left and right). ### **Collaborations and funding** Antognini, Crivelli, Kirch, Piegsa (ETH Zurich) Morenzoni, Prokscha, Salman (LMU, PSI) This work is supported by the SNF grant 200020_146902. # Muon spin rotation (μ SR) technique Muonium formation rate, F_{Mu} can be extracted using this technique. The time spectra measured in each individual segment follow the **exponential muon decay distribution**, modulated at the **Larmor frequency** in the external field: $$N(t) = N_0 e^{-t/\tau} [1 + A_{\mu}(t) + A_{\text{Mu}}(t)] + B$$ $$A_{\mu}(t) = A_{\mu} e^{-\lambda_{\mu} t} \cos(\omega_{\mu} t - \phi_{\mu})$$ $$A_{\mathrm{Mu}}(t) = A_{\mathrm{Mu}}e^{-\lambda_{\mathrm{Mu}}t}\cos(\omega_{\mathrm{Mu}}t - \phi_{\mathrm{Mu}})$$ N_0 : normalization, au : muon lifetime, B : background $A_{\mu}(t)$ and $A_{\mathrm{Mu}}(t)$: precession amplitudes at frequencies ω_{μ} for free μ^+ and ω_{Mu} for Mu ϕ_{μ} and ϕ_{Mu} : initial phases, λ_{μ} and λ_{Mu} : damping coefficients. Raw time spectrum Evolution of μ^+ spin at 6 G Evolution of Mu spin at 6 G - $ightharpoonup F_{\mathrm{Mu}}$ is calculated from the **fitted amplitudes** A_{μ} and A_{Mu} . - ▶ We obtained $F_{\text{Mu}} = (60 \pm 2)\%$ for porous SiO₂ and $(80 \pm 4)\%$ for Suprasil (Reference sample, no Mu emission into vacuum). # Positron shielding technique We developed a new approach to extract the fraction of Mu emitted into vacuum. - $\blacktriangleright \mu/\text{Mu}$ decays inside the sample \rightarrow exponential decay. - ightharpoonup Mu emitted into vacuum ightarrow deviation from exponential decay. - ▶ With **GEANT4** simulation, we extracted the fraction of Mu emitted into vacuum. # Towards 1S-2S measurement - a muonium trapping cell Simulated time spectra for different height - ▶ To increase the laser-Mu interaction time \rightarrow trap Mu atoms! - ▶ Cryogenic tests done at 77 K for the 50 nm thin SiN multi-window. - ▶ Upcoming beam time: summer 2014