# Femto-Tesla magnetometry with FID signals in Cs vapor

### Peter Koss Zoran Grujic Antoine Weis

UNIFR

June 25, 2014





Peter Koss

| 1                            |      |    |
|------------------------------|------|----|
| $\mathbf{P} \sim \mathbf{P}$ | -    | 00 |
| Day                          | ънс. | еа |
| l l                          |      |    |

Experimental setup

Experimental results



Peter Koss

| 0-         | CL | <b>•</b> | ~ | 20 |
|------------|----|----------|---|----|
| <b>D</b> 2 |    |          |   | _  |
|            |    |          |   |    |

Experimental setup

Experimental results



The magnetic moment  $\vec{\mu}$  associated with the spin polarization  $\vec{S}$  precesses at the Larmor frequency

$$\omega_L = \gamma_F |\vec{B}|$$
 where  $\frac{\gamma_F}{2\pi} \approx 3.5 \frac{Hz}{nT}$ 

#### Peter Koss

| Pacie | 00     |
|-------|--------|
| Dasic | <br>еа |
| Dubic |        |

# FID = Free Induction Decay

Peter Koss

UNIFR

| 1            |                     |    |
|--------------|---------------------|----|
| $\mathbf{D}$ | <b>C</b> 1 <b>C</b> | 00 |
| Da           | SIC                 | еа |
| -            |                     |    |

FID = Free Induction Decay = Free Polarization Decay

Peter Koss

UNIFR





We use an amplitude modulated waveform with  $\omega_{mod} = \omega_L$ .





#### Peter Koss

UNIFR



|                                      | 000000 |       |       |
|--------------------------------------|--------|-------|-------|
| Optical pumping                      |        |       |       |
| 6 <sup>2</sup> P <sub>1/2</sub>      |        | F = 4 |       |
|                                      |        | F = 3 |       |
|                                      |        |       |       |
| <u>6 <sup>2</sup>S<sub>1/2</sub></u> |        | F = 4 |       |
| Peter Koss                           |        | F = 3 | UNIFR |

| Basic idea      | Experimental setup | Experimental results | And now? |
|-----------------|--------------------|----------------------|----------|
|                 | 0000000            |                      |          |
| Optical pumping |                    |                      |          |
|                 |                    |                      |          |

6 <sup>2</sup>P<sub>1/2</sub>

 $\mathsf{F}=\mathsf{3}$ 

 $6 \, {}^2S_{1/2}$  \_\_\_\_\_ F = 4

Peter Koss

| Basic idea      | Experimental setup<br>○○○○○●○ | Experimental results | And now?<br>° |
|-----------------|-------------------------------|----------------------|---------------|
| Optical pumping |                               |                      |               |

6 <sup>2</sup>P<sub>1/2</sub>



### Peter Koss

| Basic idea      | Experimental setup | Experimental results | And now?<br>° |
|-----------------|--------------------|----------------------|---------------|
| Optical pumping |                    |                      |               |

6 <sup>2</sup>P<sub>1/2</sub>



### Peter Koss

| Basic idea | Experimental setup |   | Experimental results<br>••••••• | And now?<br>○ |
|------------|--------------------|---|---------------------------------|---------------|
| Basic idea |                    |   |                                 |               |
|            |                    |   |                                 |               |
|            |                    | Ř |                                 |               |
|            |                    |   |                                 |               |
|            |                    |   |                                 |               |
|            |                    |   |                                 |               |

 $\vec{\mu}\propto\vec{\mathsf{S}}\propto\langle\vec{\mathsf{F}}\rangle$ 

PD

~

### Peter Koss

ź



We can make a connection with the population distribution by using

$$\mu_z \propto \langle \mathsf{F}_z \rangle \propto \sum_{m=-4}^4 m \ \mathsf{p}_m \ .$$

Peter Koss



We can make a connection with the population distribution by using

$$\mu_z \propto \langle \mathsf{F}_z \rangle \propto \sum_{m=-4}^4 m \ \mathsf{p}_m \ .$$

The absorption coefficient can be written as

$$\kappa(t) = \kappa_0(1 - ec{\mu} \cdot \hat{k}) = \kappa_0[1 - S_z(t)] = \kappa_0(1 - |ec{S}|\cos\omega_L t) \; .$$

Peter Koss

UNIFR

Experimental setup

Experimental results

And now?

A free induction decay signal

By manually introducing a damping we get

$$\kappa(t) = \kappa_0 (1 - \underbrace{e^{-\gamma t} |ec{S}| \cos \omega_L t)}_{ ext{FID signal}} \; .$$

Peter Koss



Experimental setup

Experimental results

And now?

A free induction decay signal

By manually introducing a damping we get

$$\kappa(t) = \kappa_0 (1 - \underbrace{e^{-\gamma t} |\vec{S}| \cos \omega_L t}_{ ext{FID signal}})$$
 .



Peter Koss

Basic idea Experimental setup Experimental results And now? 0000000 A free induction decay signal By manually introducing a damping we get  $\kappa(t) = \kappa_0 (1 - \underbrace{e^{-\gamma t} |\vec{S}| \cos \omega_L t})$ . FID signal Raw FID data S ) 1.05 1.00 1.00 0.95 w 0.90 0.95 0.00 0.01 0.02 0.03 0.04 0.05 0.06

time (s)



Peter Koss

fT magnetometry with free induction decay signals





Peter Koss

UNIFR



The fit of the FID yields

$$B = 1.0152622(2) \ \mu T$$
.

Peter Koss

UNIFR

Experimental setup

Experimental results

And now?

Sensitivity characterisation

The magnetometric sensitivity of a single FID on the measurement time  $T_{probe}$  scales as

$$\delta B_{1FID} \propto rac{1}{SNR \ T_{probe}^{3/2}} \ .$$

Experimental setup

Experimental results

And now?

Sensitivity characterisation

The magnetometric sensitivity of a single FID on the measurement time  $T_{probe}$  scales as

$$\delta B_{1FID} \propto rac{1}{SNR \ T_{probe}^{3/2}} \ .$$

The sensitivity using N consecutive FID cycles is given by

$$\delta B_N = rac{\delta B_{1FID}}{\sqrt{N}} \; .$$

Peter Koss

Experimental setup

Experimental results

And now?

Sensitivity characterisation

The magnetometric sensitivity of a single FID on the measurement time  $T_{probe}$  scales as

$$\delta B_{1FID} \propto rac{1}{{\it SNR} ~ {\cal T}_{probe}^{3/2}} ~.$$

The sensitivity using N consecutive FID cycles is given by

$$\delta B_N = \frac{\delta B_{1FID}}{\sqrt{N}}$$

We typically get values of

 $\delta B_{1FID} = 1.5 \ pT$  and  $\delta B_{N=5} = 300 \ fT$ .

In shot noise limit we may achieve  $\delta B_{N=5} = 60 \ fT$ .

Peter Koss

## Experimental setup

## Experimental results

### For 30% duty cycle



### Peter Koss

## Experimental setup

## Experimental results

### For 30% duty cycle



### Peter Koss

| Basic idea         | Experimental setup | Experimental results | And now? |
|--------------------|--------------------|----------------------|----------|
|                    | 0000000            | 00000000             |          |
| For 30% duty cycle | е                  |                      |          |

The highest sensitivity can be reached for a pump amplitude of  $\approx 20 \mu A$ .



| Basic idea         | Experimental setup | Experimental results | And now? |
|--------------------|--------------------|----------------------|----------|
|                    |                    | 00000000             |          |
| For 30% duty cycle | 9                  |                      |          |

The highest sensitivity can be reached for a pump amplitude of  $\approx 20 \mu A.$ 



The highest sensitivity in shot noise limit we get is  $\delta B = 60 \frac{fT}{\sqrt{Hz}}$ .



Probe

'3 μW

fT magnetometry with free induction decay signals

65 µW

Т

Pump

The duty cycle of the pump waveform has to be 30%.

| Basic idea      | Experimental setup   | Experimental results | And now? |
|-----------------|----------------------|----------------------|----------|
|                 |                      |                      | •        |
| Investigation o | f systematic effects |                      |          |



#### Peter Koss

UNIFR

| Basic idea      | Experimental setup   | Experimental results | And now? |
|-----------------|----------------------|----------------------|----------|
|                 | 0000000              |                      | •        |
| Investigation c | f systematic effects |                      |          |
|                 |                      |                      |          |



#### Peter Koss

UNIFR