

The First G-APD Cherenkov Telescope: Status and Results

Gareth Hughes for the FACT Collaboration Annual Meeting of the SPS, 2014

Outline

- FACT: First G-APD Cherenkov Telescope
- Proof of concept for Geiger-mode Avalanche Photodiodes for Cherenkov astronomy
 > 2.5 years of operation
- How we calibrate and operate the telescope
- Atmospheric Monitoring
- Monitoring of Blazars

FACT Collaboration

A. Biland^a, T. Bretz^a; J. Buß^b, V. Commichau^a, L. Djambazov^a, D. Dorner^e*,
S. Einecke^b, D. Eisenacher^e, J. Freiwald^b, O. Grimm^a, H. von Gunten^a, C. Haller^a,
C. Hempfling^e, D. Hildebrand^a, G. Hughes^a, U. Horisberger^a, M. L. Knoetig^a,
T. Krähenbühl^a, W. Lustermann^a, E. Lyard^c, K. Mannheim^e, K. Meier^e, S. Mueller^b,
D. Neise^b, A.-K. Overkemping^b, A. Paravac^e, F. Pauss^a, W. Rhode^b, U. Röser^a,
J.-P. Stucki^a, T. Steinbring^e, F. Temme^b, J. Thaele^b, P. Vogler^a, R. Walter^c, Q. Weitzel^a

E *H* zürich

Cherenkov Technique

First G-APD Cherenkov Telescope

- 2km a.s.I La Palma
- Old HEGRA Mount
- Mirror Area 9.51 m²
- 30 reconditioned facets
- Davies-Cotton Optics

G-APDs (SiPM)

- Hamamatsu MPPC S10362-33-50C
- Comparison with Photo-Multiplier Tubes:
 - Cheaper than PMTs
 - Similar detection efficiencies
 - Do not suffer significant aging (Moonlight)
 - Can be read out quickly
 - Voltages can be much lower (100V compare to 1000V for PMTs)
- Astroparticle community knows how to handle cross-talk and after pulsing

G-APDs (SiPM)

- Hamamatsu MPPC S10362-33-50C
- Comparison with Photo-Multiplier Tubes:
 - Cheaper than PMTs
 - Similar detection efficiencies
 - Do not suffer significant aging (Moonlight)
 - Can be read out quickly
 - Voltages can be much lower (100V compare to 1000V for PMTs)

- Astroparticle community knows how to handle cross-talk and after pulsing
- However the gain is temperature dependent and ambient light will result in voltage drop (due to serial resistors)
 ⇒ Feedback system required

E *H* zürich

FACT Camera

- 1440 G-APDs (SiPM) and readout channels Hamamatsu MPPC S10362-33-50C
- Active area of 3×3 mm²

- 40 DAQ readout boards (DRS4)
- 320 bias voltage channels
- ~500 Watt power consumption Water Cooled

Over-Voltage

- V_{BD} depends linearly on Temperature
- Cross talk vs PDE: Both depend on Over-Voltage
 - As well as Single PE resolution
 - Best Over-Voltage found to be just above 1 V

Feedback: Temperature

320 bias voltage channels

Max Voltage 90 V Max Current 4 mA $\Delta V \sim 22 \text{ mV}$ $\Delta I \sim 1.2 \mu \text{A}$

Feedback: Temperature

Feedback: Dark Count Spectra

1428 Pixels, I year data, $\Delta T \sim 25^{\circ}C$

G Hughes | SPS 2014 | 2014-06-30

photon sensor response of FACT, JINST

Feedback: Rate Scan

 Rate Scans measure both CR background and NSB

Feedback: Dark Current

 Rate scans prove that cosmic ray trigger rate is constant despite changing NSB

Atmosphere

- Telescopes expend a lot of effort to characterize the atmosphere
- Large source of systematic errors
- LIDAR, Infra-rad cameras, LASERs and observers eyes
 - Inconsistent and/or can get in the way of taking data
- First step of any analysis is to identify good quality data

Atmosphere

Hadronic Trigger Rate does depend on atmospheric conditions

Work in progress: Can we split the signal to do Rate Scans on the fly?

D. Hildebrand et al. (FACT Collaboration): Proceedings 33rd ICRC, Rio de Janeiro 2013

E *H* zürich

Moonlight Observations

Quick Look Analysis

Real Time fast analysis publicly available almost instantly

www.fact-project.org/monitoring/

2 Flare Alerts sent to the community in the last few days

Conclusion

- No Focal Plane Problems: In over 2.5 yrs
- System is so stable we operate the telescope remotely
- Using a feedback system temperature and night sky gain dependence can be mastered
- The atmosphere could be monitored through the data stream
- Monitoring Blazars to provide alerts to the community
- G-APDs are an excellent choice for Cherenkov Telescopes

http://fact-project.org/smartfact