

Update on tracking simulations for HL-LHC

R. De Maria, S. Fartoukh, M. Giovannozzi (CERN), Y. Cai, Y. Nosochkov, M.-H. Wang (SLAC)

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Introduction

- History of tracking activities
 - Layout: SLHCV3.1b
 - Collision
 - Injection
 - Layout: HLLHCV1.0
 - Collision
 - Injection

All FQ tables are stored under afs:

- /afs/cern.ch/eng/lhc/optics/SLHCV3.1b/errors
- /afs/cern.ch/eng/lhc/optics/HLLHCV1.0/errors

Time line NB: expected FQ tables evolved with time during the studies

Field quality specifications for IT quadrupoles at collision energy ($r_0 = 50 \text{ mm}$)

skew	mean	uncertainty	random	normal	mean	uncertainty	random
a3	0	0.800	0.800	b3	0	0.820	0.820
a4	0	0.650	0.650	b4	0	0.570	0.570
a5	0	0.430	0.430	b5	0	0.420	0.420
a6	0	0.310	0.310	b6	0.800	0.550	0.550
a7	0	0.152	0.095	b7	0	0.095	0.095
a8	0	0.088	0.055	b8	0	0.065	0.065
a9	0	0.064	0.040	b9	0	0.035	0.035
a10	0	0.040	0.032	b10	0.075	0.100	0.100
a11	0	0.026	0.0208	b11	0	0.0208	0.0208
a12	0	0.014	0.014	b12	0	0.0144	0.0144
a13	0	0.010	0.010	b13	0	0.0072	0.0072
a14	0	0.005	0.005	b14	-0.020	0.0115	0.0115

 $B_{y} + iB_{x} = 10^{-4} B_{ref} \times \sum_{n=1}^{\infty} (b_{n} + ia_{n}) (\frac{x + iy}{r_{0}})^{n-1}$ Red values represent requests from WP2

Field quality specifications for D1 separation dipoles at collision energy ($r_0 = 50 \text{ mm}$)

skew	mean	uncertainty	random	normal	mean	uncertainty	random
a2	0	0.679	0.679	b2	0	0.200	0.200
a3	0	0.282	0.282	b3	-0.900	0.727	0.727
a4	0	0.444	0.444	b4	0	0.126	0.126
a5	0	0.152	0.152	b5	0	0.365	0.365
a6	0	0.176	0.176	b6	0	0.060	0.060
a7	0	0.057	0.057	b7	0.4 →0.2	0.165	0.165
a8	0	0.061	0.061	b8	0	0.027	0.027
a9	0	0.020	0.020	b9	-0.59 → -0.295	0.065	0.065
a10	0	0.025	0.025	b10	0	0.008	0.008
a11	0	0.007	0.007	b11	0.470	0.019	0.019
a12	0	0.008	0.008	b12	0	0.003	0.003
a13	0	0.002	0.002	b13	0	0.006	0.006
a14	0	0.003	0.003	b14	0	0.001	0.001
a15	0	0.001	0.001	b15	-0.040	0.002	0.002

Field quality specifications for D2 separation dipoles at collision energy ($r_0 = 35 \text{ mm}$)

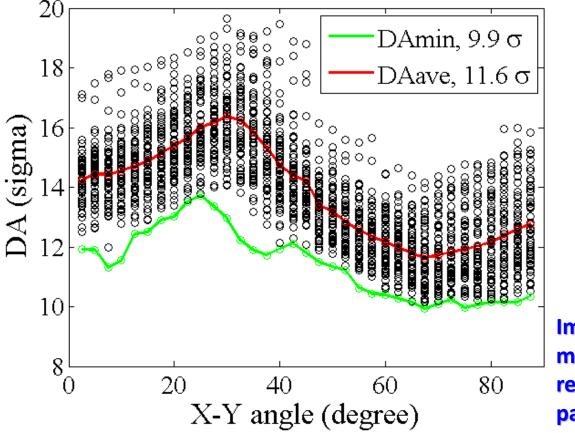
skew	mean	uncertainty	random	normal	mean	uncertainty	random
a2	0	0.679	0.679	b2	±25 →~1 *	2.5 →~1 *	2.5 →~1 *
a3	0	0.282	0.282	b3	3.0 →1.5	1.5	1.5
a4	0	0.444	0.444	b4	±2.0	0.2	0.2
a5	0	0.152	0.152	b5	-1.0	0.5	0.5
a6	0	0.176	0.176	b6	0	0.060	0.060
a7	0	0.057	0.057	b7	-0.200	0.165	0.165
a8	0	0.061	0.061	b8	0	0.027	0.027
a9	0	0.020	0.020	b9	0.090	0.065	0.065
a10	0	0.025	0.025	b10	0	0.008	0.008
a11	0	0.007	0.007	b11	0.030	0.019	0.019
a12	0	0.008	0.008	b12	0	0.003	0.003
a13	0	0.002	0.002	b13	0	0.006	0.006
a14	0	0.003	0.003	b14	0	0.001	0.001
a15	0	0.001	0.001	b15	0	0.002	0.002

This is an initial very optimistic FQ

Field quality specifications for Q4 matching quadrupoles at collision energy ($r_0 = 30 \text{ mm}$)

skew	mean	uncertainty	random	normal	mean	uncertainty	random
a3	0	0.682	1.227	b3	0	1.282	1.500
a4	0	0.428	0.893	b4	0	0.483	0.465
a5	0	0.177	0.406	b5	0	0.203	0.431
a6	0	0.484	0.277	b6	0	5.187	1.487
a7	0	0.094	0.189	b7	0	0.094	0.189
a8	0	0.193	0.257	b8	0	0.193	0.257
a9	0	0.088	0.088	b9	0	0.088	0.088
a10	0	0.120	0.120	b10	0	3.587	0.956
a11	0	0.326	0.489	b11	0	0.326	0.489
a12	0	0.445	0.222	b12	0	0.445	0.222
a13	0	0.606	0.303	b13	0	0.606	0.303
a14	0	0.827	0.413	b14	0	2.067	0.413
a15	0	1.127	0.564	b15	0	1.127	0.564

Field quality specifications for Q5 matching quadrupoles at collision energy ($r_0 = 17 \text{ mm}$)


skew	mean	uncertainty	random	normal	mean	uncertainty	random
a3	0	0.500	0.900	b3	0	0.940	1.100
a4	0	0.230	0.480	b4	0	0.260	0.250
a5	0	0.070	0.160	b5	0	0.080	0.170
a6	0	0.140	0.080	b6	0	1.500	0.430
a7	0	0.020	0.040	b7	0	0.020	0.040
a8	0	0.030	0.040	b8	0	0.030	0.040
a9	0	0.010	0.010	b9	0	0.010	0.010
a10	0	0.010	0.010	b10	0	0.300	0.080
a11	0	0.020	0.030	b11	0	0.020	0.030
a12	0	0.020	0.010	b12	0	0.020	0.010
a13	0	0.020	0.010	b13	0	0.020	0.010
a14	0	0.020	0.010	b14	0	0.050	0.010
a15	0	0.020	0.010	b15	0	0.020	0.010

Dynamic aperture at collision energy

The simulation is performed for the SLHCV3.1b collision optics with $\beta^*=15$ cm at E=7 TeV. It includes arc errors and corrections, the new specification errors for the IT, D1, D2, Q4, Q5 magnets, feed-down effect in the D1, D2 dipoles, and IT non-linear field correctors of order n = 3 to 6.

Impact of single magnet families are reported in IPAC13 paper.

Field quality specifications for IT quadrupoles at injection energy ($r_0 = 50 \text{ mm}$)

skew	mean	uncertainty	random	normal	mean	uncertainty	random
a3	0	0.800	0.800	b3	0	0.820	0.820
a4	0	0.650	0.650	b4	0	0.570	0.570
a5	0	0.430	0.430	b5	0	0.420	0.420
a6	0	0.310	0.310	b6	-16.0	1.100	1.100
a7	0	0.190	0.190	b7	0	0.190	0.190
a8	0	0.110	0.110	b8	0	0.130	0.130
a9	0	0.080	0.080	b9	0	0.070	0.070
a10	0	0.040	0.040	b10	4.15	0.200	0.200
a11	0	0.026	0.026	b11	0	0.026	0.026
a12	0	0.014	0.014	b12	0	0.018	0.018
a13	0	0.010	0.010	b13	0	0.009	0.009
a14	0	0.005	0.005	b14	-0.040	0.023	0.023

Field quality specifications for D1 separation dipoles at injection energy ($r_0 = 50 \text{ mm}$)

skew	mean	uncertainty	random	normal	mean	uncertainty	random
a2	0	0.679	0.679	b2	0	0.200	0.200
a3	0	0.282	0.282	b3	-16.0	0.727	0.727
a4	0	0.444	0.444	b4	0	0.126	0.126
a5	0	0.152	0.152	b5	-0.500	0.365	0.365
a6	0	0.176	0.176	b6	0	0.060	0.060
a7	0	0.057	0.057	b7	0.900	0.165	0.165
a8	0	0.061	0.061	b8	0	0.027	0.027
a9	0	0.020	0.020	b9	-0.660	0.065	0.065
a10	0	0.025	0.025	b10	0	0.008	0.008
a11	0	0.007	0.007	b11	0.440	0.019	0.019
a12	0	0.008	0.008	b12	0	0.003	0.003
a13	0	0.002	0.002	b13	0	0.006	0.006
a14	0	0.003	0.003	b14	0	0.001	0.001
a15	0	0.001	0.001	b15	-0.040	0.002	0.002

Red values represent

requests from WP2

Field quality specifications for D2 separation dipoles at injection energy ($r_0 = 35 \text{ mm}$)

skew	mean	uncertainty	random	normal	mean	uncertainty	random
a2	0	0.679	0.679	b2	0	0.200	0.200
a3	0	0.282	0.282	b3	3.8	0.727	0.727
a4	0	0.444	0.444	b4	±8.0	0.126	0.126
a5	0	0.152	0.152	b5	3.0	0.365	0.365
a6	0	0.176	0.176	b6	0	0.060	0.060
a7	0	0.057	0.057	b7	0.100	0.165	0.165
a8	0	0.061	0.061	b8	0	0.027	0.027
a9	0	0.020	0.020	b9	0.020	0.065	0.065
a10	0	0.025	0.025	b10	0	0.008	0.008
a11	0	0.007	0.007	b11	0	0.019	0.019
a12	0	0.008	0.008	b12	0	0.003	0.003
a13	0	0.002	0.002	b13	0	0.006	0.006
a14	0	0.003	0.003	b14	0	0.001	0.001
a15	0	0.001	0.001	b15	0	0.002	0.002

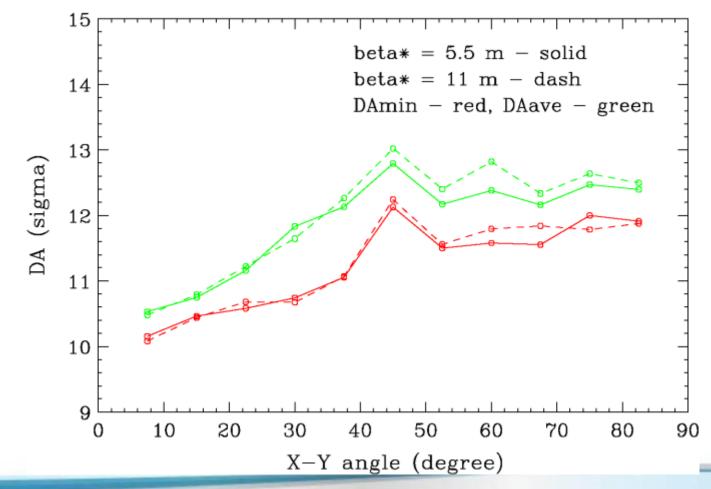
Red values represent

requests from WP2

Field quality specifications for Q4 matching quadrupoles at injection energy ($r_0 = 30 \text{ mm}$)

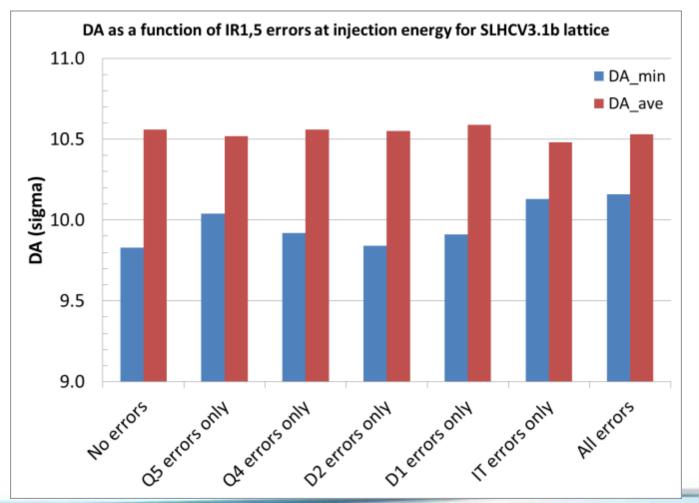
skew	mean	uncertainty	random	normal	mean	uncertainty	random
a3	0	0.682	1.227	b3	0	1.282	1.500
a4	0	0.428	0.893	b4	0	0.483	0.465
a5	0	0.177	0.406	b5	0	0.203	0.431
a6	0	0.484	0.277	b6	-10.373	10.373	2.974
a7	0	0.094	0.189	b7	0	0.094	0.189
a8	0	0.193	0.257	b8	0	0.193	0.257
a9	0	0.088	0.088	b9	0	0.088	0.088
a10	0	0.120	0.120	b10	0	3.587	0.956
a11	0	0.326	0.489	b11	0	0.326	0.489
a12	0	0.445	0.222	b12	0	0.445	0.222
a13	0	0.606	0.303	b13	0	0.606	0.303
a14	0	0.827	0.413	b14	0	2.067	0.413
a15	0	1.127	0.564	b15	0	1.127	0.564

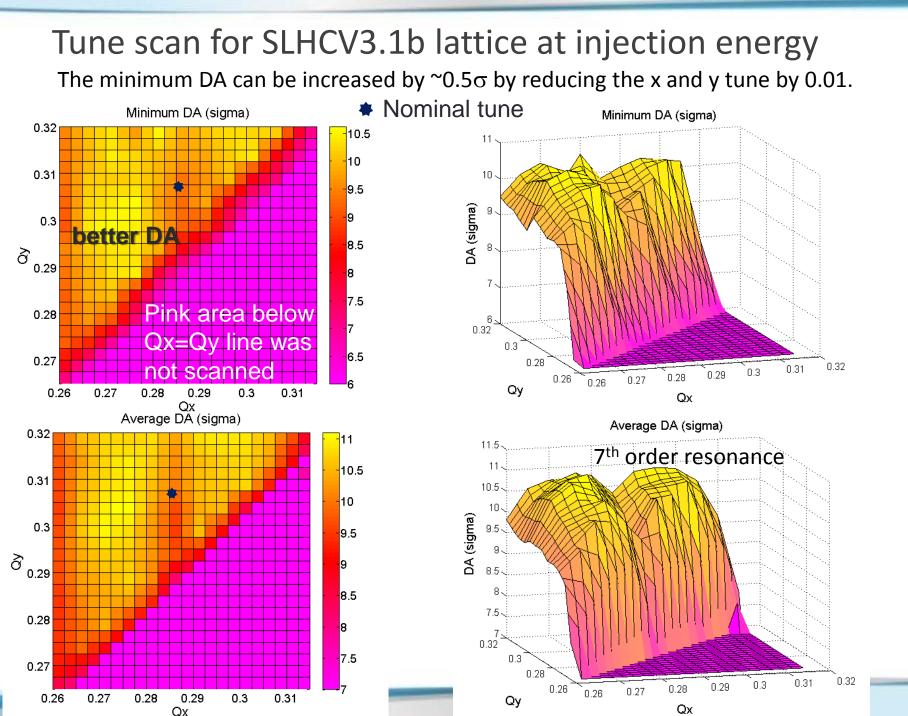
Field quality specifications for Q5 matching quadrupoles at injection energy ($r_0 = 17 \text{ mm}$)


skew	mean	uncertainty	random	normal	mean	uncertainty	random
a3	0	0.500	0.900	b3	0	0.940	1.100
a4	0	0.230	0.480	b4	0	0.260	0.250
a5	0	0.070	0.160	b5	0	0.080	0.170
a6	0	0.140	0.080	b6	-3.000	3.000	0.860
a7	0	0.020	0.040	b7	0	0.020	0.040
a8	0	0.030	0.040	b8	0	0.030	0.040
a9	0	0.010	0.010	b9	0	0.010	0.010
a10	0	0.010	0.010	b10	0	0.300	0.080
a11	0	0.020	0.030	b11	0	0.020	0.030
a12	0	0.020	0.010	b12	0	0.020	0.010
a13	0	0.020	0.010	b13	0	0.020	0.010
a14	0	0.020	0.010	b14	0	0.050	0.010
a15	0	0.020	0.010	b15	0	0.020	0.010

Dynamic aperture at injection energy

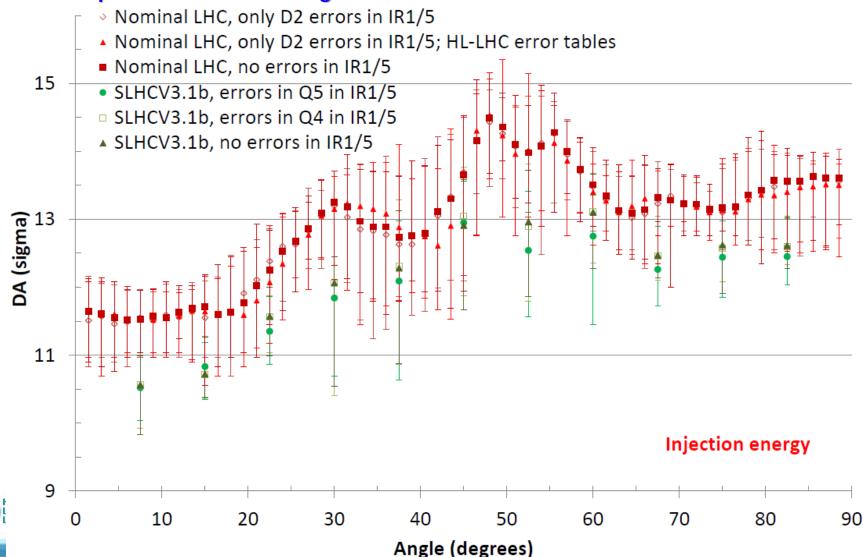
The simulation is performed for the SLHCV3.1b injection optics at E=450 GeV. It includes arc errors and corrections, the specification errors for the IT, D1, D2, Q4, Q5 magnets, and feed-down effect in the D1, D2 dipoles.


The minimum DA for 60 random seeds and 11 x-y angles is 10.2σ .



DA sensitivity to IR magnet errors in SLHCV3.1b lattice at injection energy

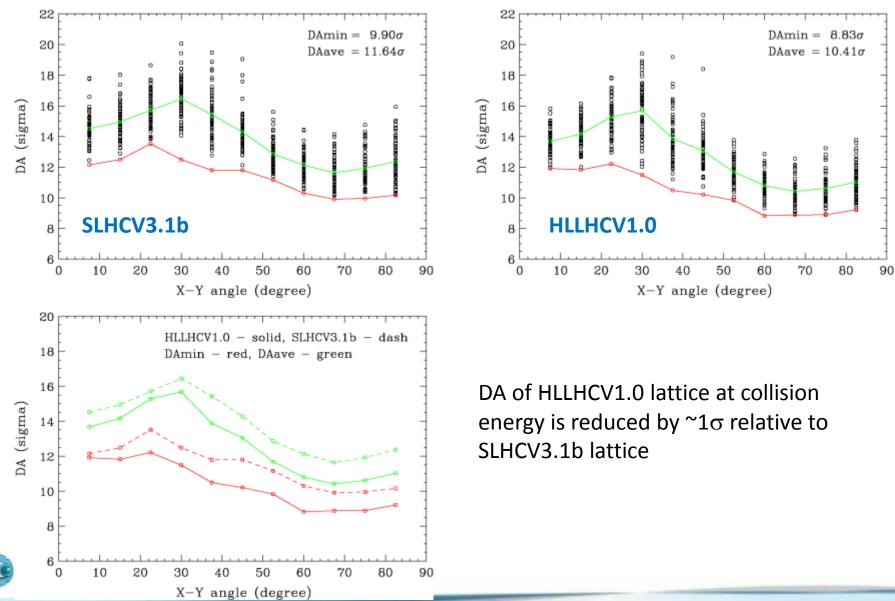
Arc errors and standard corrections are always included. Injection lattice with $\beta^* = 5.5$ m at IP1,5. DA is not sensitive to the IR magnet errors – the DA fluctuation is comparable to accuracy of the calculation.



Comparison of DA at injection energy

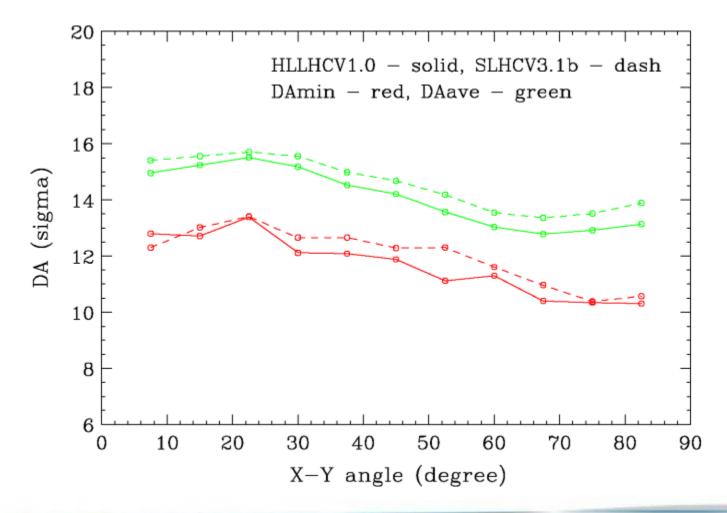
1 σ DA loss with respect to nominal LHC.

Probably due to vanishing arc cell phase split: exactly in s12/45/56/81 and approximately in the other 4. No DA-related problems observed during ATS MDs.



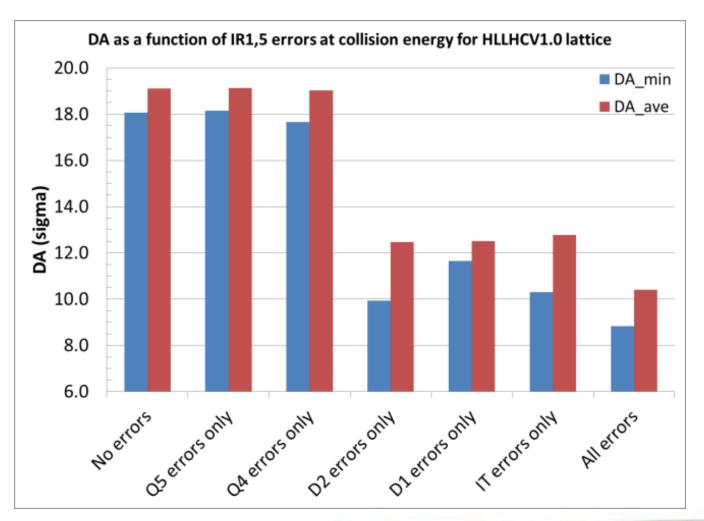
Intermediate summary

- DA situation for SLHCV3.1b
 - Collision:
 - Minimum DA (35 angles): 9.9 σ
 - FQ: several multipoles to be improved
 - Injection:
 - Minimum DA (11 angles): 10.2 σ
 - FQ: acceptable



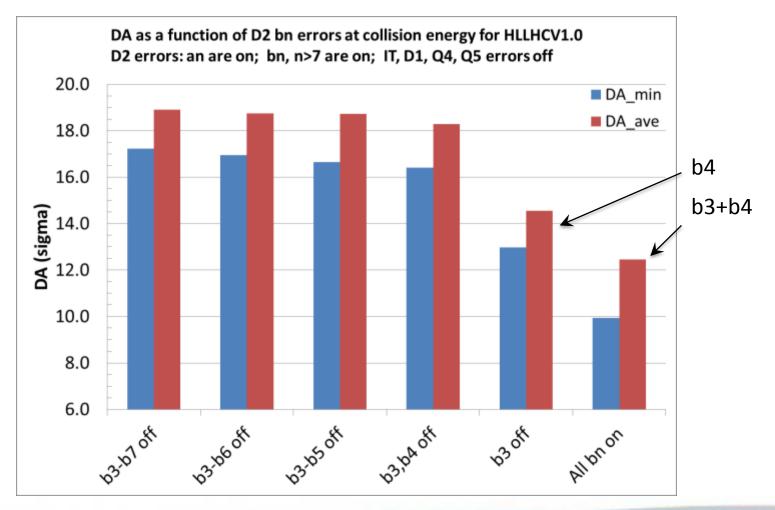
SLHCV3.1b versus HLLHCV1.0: DA at collision energy

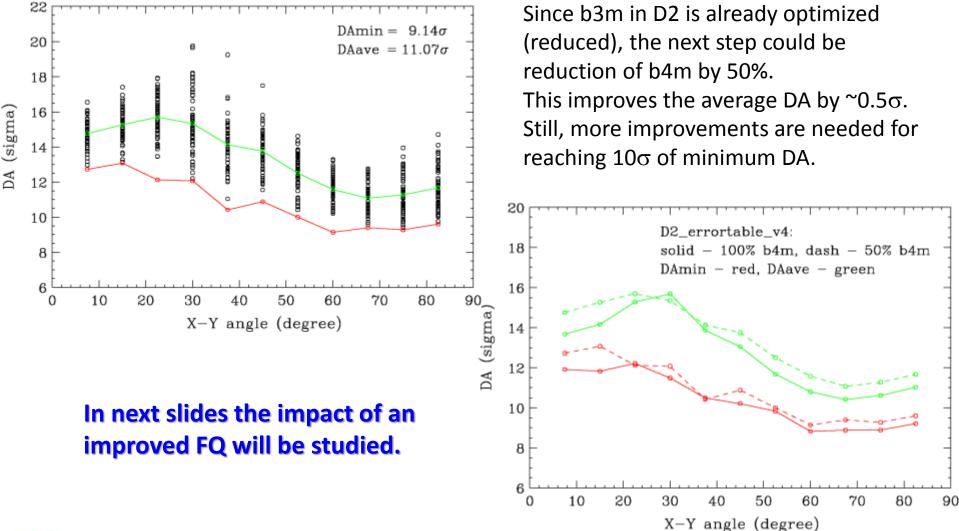
SLHCV3.1b versus HLLHCV1.0: Effect of IT errors at collision energy


When D1, D2, Q4, Q5 errors are off, the effect of IT field errors in HLLHCV1.0 lattice at collision energy is about 0.5σ smaller DA relative to SLHCV3.1b lattice.

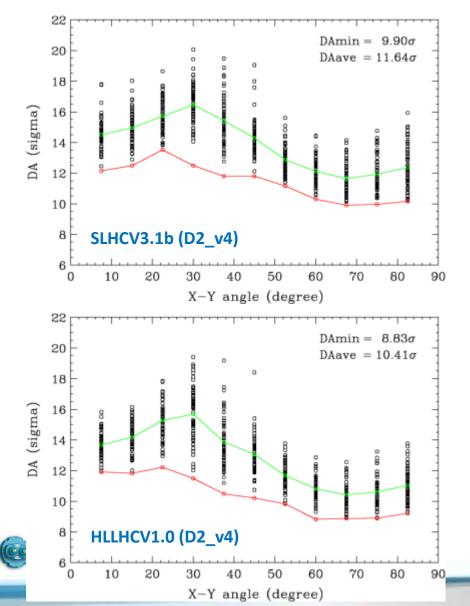
DA sensitivity to IR magnet errors in HLLHCV1.0 lattice

at collision energy Arc errors and standard corrections are always included.

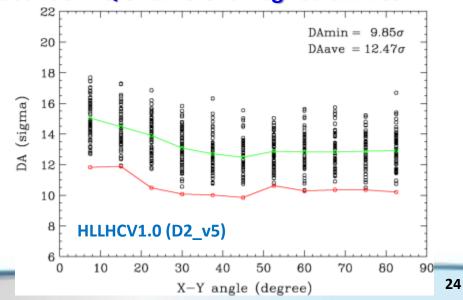

Errors in the D2 separation dipoles and the IT cause the most reduction of the DA.


DA sensitivity to low order b_n terms of D2 error field for HLLHCV1.0 lattice at collision energy

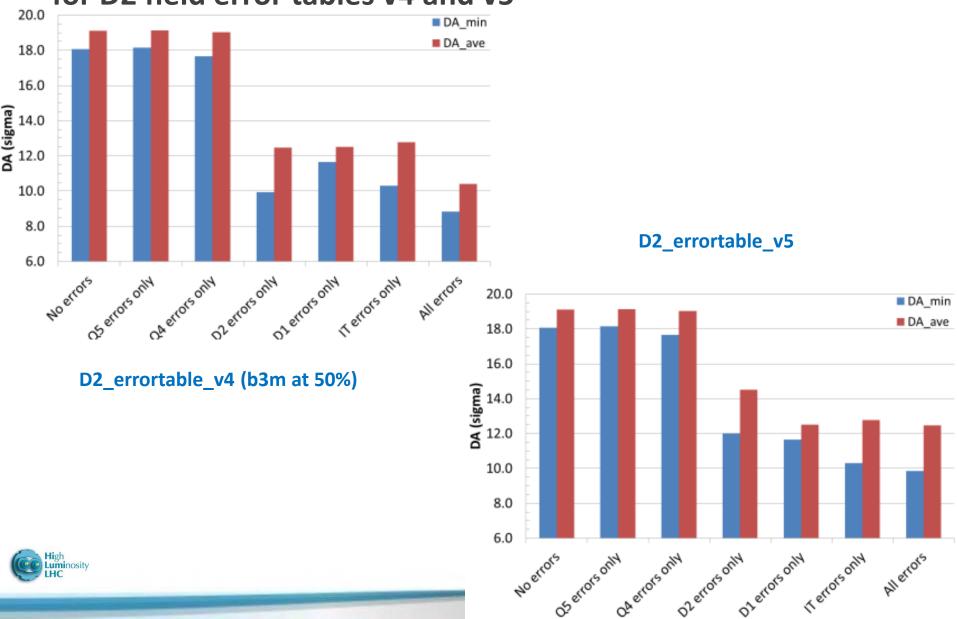
The b3 and b4 terms of the D2 error field make the most impact on the DA. This effect is likely amplified by the sextupole resonances near the nominal tune.



DA of HLLHCV1.0 lattice at collision energy when b4m of D2 error field is reduced to 50%

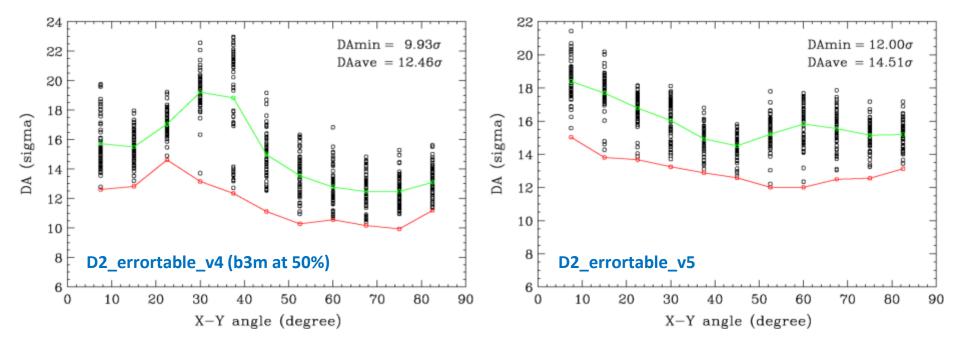


DA with all errors at collision energy for SLHCV3.1b and HLLHCV1.0 and D2 error tables v4 and v5



The DA of HLLHCV1.0 with the latest D2_errortable_v5 errors is significantly improved compared to DA with optimized D2_errortable_v4 (b3m at 50%) – compare two lower plots.

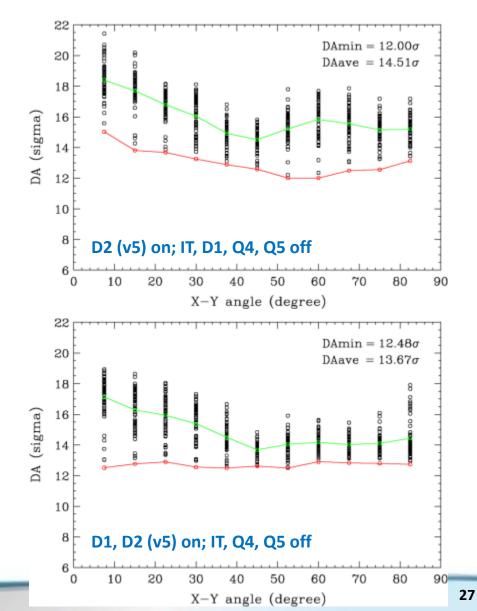
It also has comparable DA_min and better DA_ave as compared to SLHCV3.1b with D2_errortable_v4 (b3m at 50%) – compare diagonal plots -> hints for compensation between FQ of different magnet families.



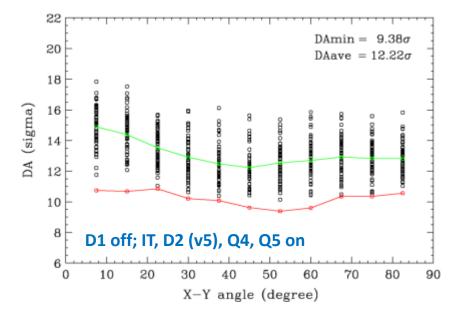
DA sensitivity to IR errors for HLLHCV1.0 at collision energy for D2 field error tables v4 and v5

DA of HLLHCV1.0 with D2 errors ON and IT, D1, Q4, Q5 errors OFF

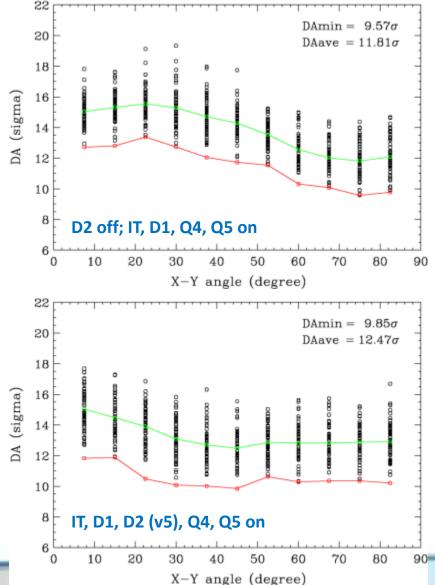
When IT, D1, Q4, Q5 errors are off, the D2_errortable_v5 improves DA of HLLHCV1.0 by about 2 sigma relative to optimized D2_errortable_v4 (b3m at 50%).



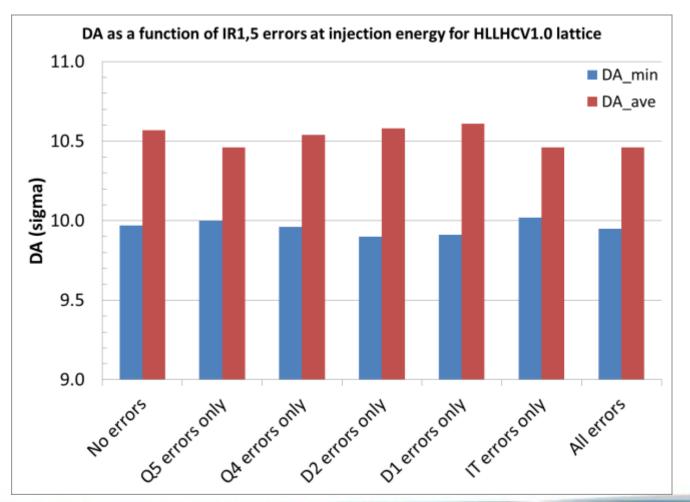
Effects of D1, D2 (v5) errors when IT, Q4, Q5 errors are OFF



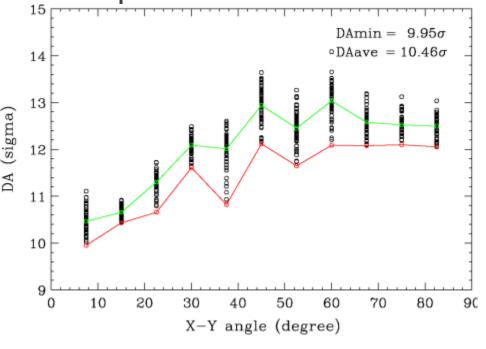
With the other IR errors off, the D1 errors mostly reduce vertical DA (see above). When D1 and D2 (v5) errors are applied together, they seem to result in some error cancellation properties which improve DA_min relative to cases where D1 or D2 errors are applied separately.



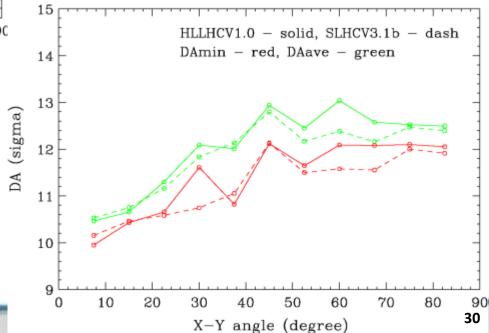
Effects of D1, D2 (v5) errors when IT, Q4, Q5 errors are ON


Similar conclusion as on the previous page, when the IT, Q4, Q5 errors are turned on: there is some improvement when the D1 and D2 (v5) errors are applied together, resulting in better DA, compared to cases when D1, D2 errors are applied separately.

It appears that there may be compensation between b3m terms of D1 and D2 reducing the impact of the nearby 3rd order resonance.


HLHCV1.0 lattice at injection energy: DA sensitivity to IR

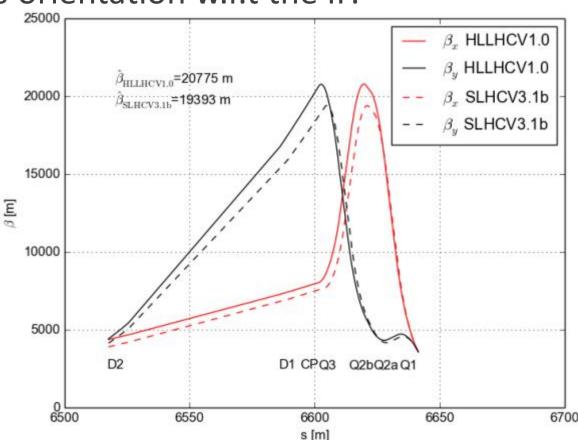
magnet errors Arc errors and standard corrections are always included. Injection lattice with $\beta^* = 5.5$ m at IP1,5. Similar to SLHCV3.1b lattice, there is no impact from the IR magnet errors on DA of HLLHCV1.0 lattice at injection energy.



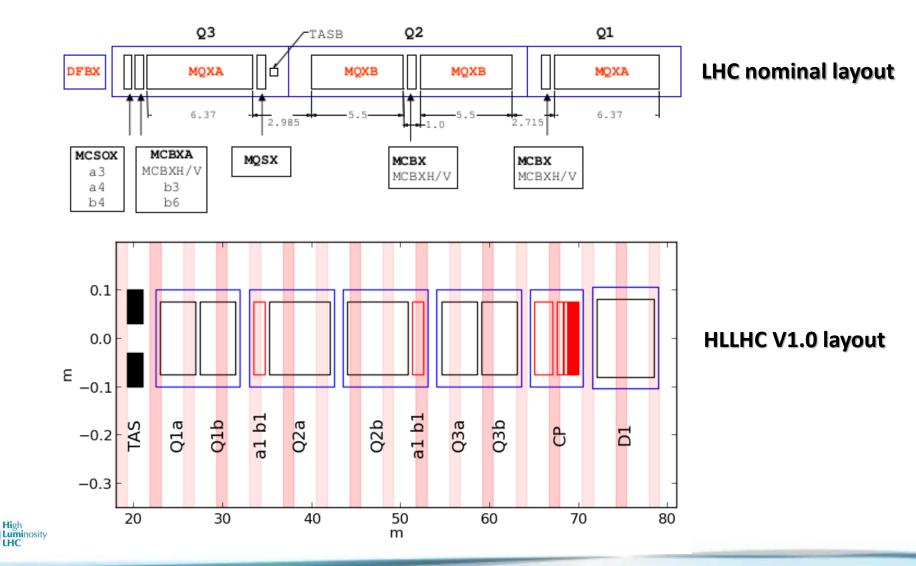
DA of HLLHCV1.0 lattice at injection energy and comparison to SLHCV3.1b

The DA of HLLHCV1.0 and SLHCV3.1b lattices at injection energy are comparable and acceptable.

However, it is 1σ below the DA of the nominal LHC. Hence, further improvements (e.g. tune adjustment) may need to be considered.


Intermediate summary

- DA situation for HLLHCV1.0
 - Collision:
 - Minimum DA (35 angles): 8.8 σ (but the latest D2
 FQ improves it)
 - FQ: that determined with SLHCV3.1b is still suitable
 - Strong impact of D2 FQ: optimisation in progress
 - Injection:
 - Minimum DA (11 angles): 9.9 σ
 - FQ: acceptable


Comparison SLHCV3.1b – HLLHCV1.0

- Larger β_{max} (7%) due to smaller gradient and Q1-Q3 split (50 cm additional drift). Therefore:
 - Larger driving terms and main sextupole strengths.
- Different quadrupoles orientation w.r.t the IP.
- Different IP1/5 phase advance.
- Different correctors position.

HL-LHC V1.0 layout

Triplet layout and orientations

- SLHCV3.1b:
- a) IP |Q1= |Q2a= |Q2b= |Q3=
- HLLHCV1.0:
- a) IP =Q1a||Q1b= =Q2a| |Q2b= =Q3a||Q3b=
- b) IP |Q1a=|Q1b= |Q2a= |Q2b= |Q3a=|Q3b=
- c) IP =Q1a||Q1b= |Q2a= =Q2b| =Q3a||Q3b=

Left side mirror symmetric.

= lead end side; | non lead end side;

SLHCV3.1b: side cancellation between Q1-Q3 and Q2

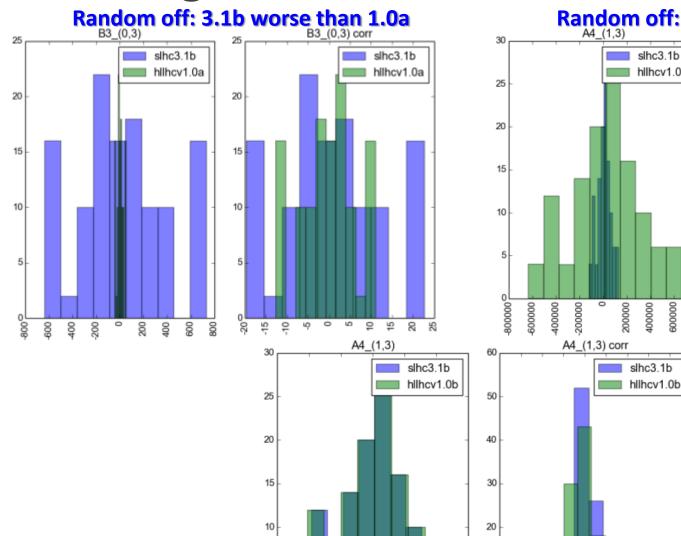
HLLHCV1.0a: Local cancellation between quads, preferred orientation from hardware integration

HLLHCV1.0b: Mimic closely 3.1b

HLLHCV1.0c: Reverses Q2 to better cancel Q1b with Q2a

Other orientations with the same degree of symmetries tested without qualitative differences, options without symmetries not pursued.

Driving term and corrector strength


10

8e-12

12

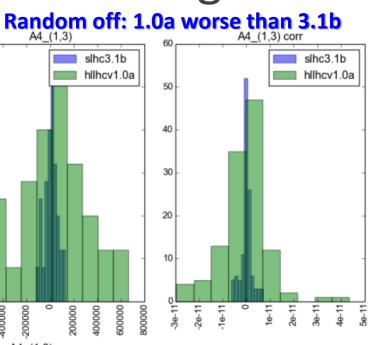
ġ

4e-12 -2e-12 0 2e-12 4e-12 6e-12 8e-12

5

50000

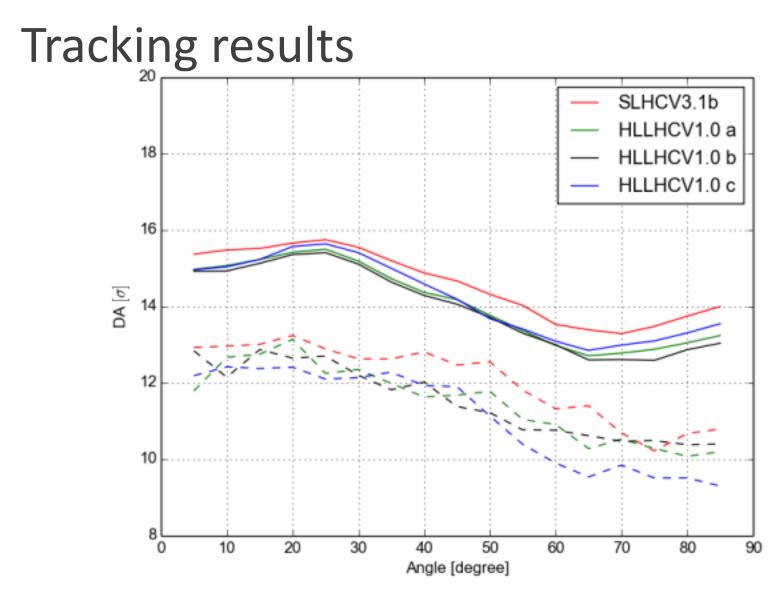
00000


50000

0

50000

100000


50000

400000

1e-11

Random off: 1.0b very similar to 3.1b.

No obvious choice of reorientation.

Outlook

- Further optimisation of D2 FQ (discussions at US-LARP) -> collision.
- Impact of reviewed IT FQ (outcome of US-LARP meeting) -> injection and collision.
- Start considering the FQ of Q4 (input from WP3) -> injection and collision.
- DA vs. IP1/5 phase advance -> injection and collision.
- Further studies of DA at injection.
- Selection of IT orientation.

