
CFEngine at AGLT2

Ben Meekhof

ATLAS Great Lakes Tier2

University of Michigan

HEPiX Fall 2014, Oct 13-17

Outline

• Basic CFEngine setup
• History at AGLT2
• Current setup at AGLT2

• Updating and testing
• Policy hosts
• Version Control
• Monitoring

• Examples
• Iptables
• DNS management
• Other Managed Configs

• Other Notes

Basic CFEngine Structure
• Similar in rough concept to other configuration managers such as puppet

• Client pulls configuration definition from server
• Interpreter parses policy code, edits file templates, applies config
• Some status is produced – dashboard update, email or other capture

of output if there are errors or reports

• In CFEngine case, policy is copied and kept locally and continues to be
applied even when client cannot reach server

• The most basic “unit” of configuration in CFEngine is called a Promise.
o Such as…promise to set file permissions
o Promises are contained in Bundles

• Promises have a body with details which depend on promise type
o Such as…what are the file permissions? Which attributes are we

wanting our promise to effect?

History at AGLT2

• In ~2010 we implemented CFEngine version 2 as our configuration
manager. Prior to that we had no or rudimentary config management.

• At that time version 3 was in early releases so we chose to migrate later
• Also much more familiar with 2 – faster implementation

• Perhaps a year after that (2011) we started implementing CFEngine v3 to
manage cluster compute nodes built with rocks

• After some experience, we pushed harder to drop CFE2 nodes and take
over needed configuration in CFE3.
• Ran CFE2 and 3 in parallel for a while

• At this point, today, we don’t manage any systems under CFE2.

• Perhaps opposite the correct planning order, this year we’ve formalized an

SVN based workflow for testing and pushing to production.
• Easily create new testing/prototyping environments as SVN branches

Setup at AGLT2

Clients determine which server(s) and what policy to run from
/var/cfengine/policy_hosts.dat and policy_path.dat

The policy_path.dat file points at our default production policy stored at
/var/cfengine/policy/T2 on the policy hosts (same contents).

Can either modify the .dat, or define a new policy path for temporary testing:
 cf-agent –DPolicyPath_testing

Setup at AGLT2 - details
"servercount" int => readstringarray("ps", "$(sys.workdir)/policy_server.dat", "#.*", "[\n]",

2, 100),

comment => "Number of policy servers read from file. Server names are populated into array

'ps' ";

"server" slist => getvalues("ps");

"policydat" comment => "Path to my config on policy server, read from file",

string => readfile("$(sys.workdir)/policy_path.dat",80);

"policyclass" comment => "Class to set policy source on server (over-rides other

definitions)",

slist => classesmatching("PolicyPath_.*");

classes:

"set_policydat" comment => "Have set policy source path from file",

expression => regcmp("/.*",$(policydat));

"set_policyclass" comment => "Check if PolicySource_XXXX was set to indicate alternate policy

path", expression => classmatch("PolicyPath_.*");

}

bundle agent update {

vars:

set_policyclass::

 "csplit" slist => splitstring(nth("policy.policyclass",0),"_",2);

 "policypath" string => concat("$(policy.defpath)/", nth("csplit",1));

set_policydat.!set_policyclass::

 "policypath" string => "$(policy.policydat)";

!set_policydat.!set_policyclass::

 "policypath" string => "$(policy.defpolicy)";

Workflow
• Our policy servers are configured to export policy setups from

/var/cfengine/policy

• Current production policy is always updated in SVN before pushing to the policy
server
• We’re somewhat informal, there’s no real validation process except

trusting all (5) of us to update working copy before push to server
• Possible we’ll yet consider going to a workflow where all changes have to

go through svn/git in combination with a post-commit script to
automatically sync policy servers

• When syncing policy to server, the sync script updates a variable to match the

current SVN version
• We always know if dealing with the most current SVN and if it was synced

from a modified working dir (svnversion appends “M”).

Monitoring

Monitoring

• Clicking on the Warn link brings up the actual output relayed by the plugin
• Someone marked sshd_config immutable to protect from management

• Writing check_mk plugins is well documented, I just followed the example and wrote a
very simple plugin in one day.
• Agent plugin is bash that does some simple service checks and timestamp

comparisons to determine if previous cf-agent run had output
• On check_mk server side, python script to parse agent plugin output and return

status code
• http://mathias-kettner.com/checkmk_devel_agentbased.html

Example - iptables
Cfengine policy file iptables.cf:

"netumich" slist => { "141.211.0.0/16", "141.213.0.0/16“ };

CobblerServers::

 "tcp[80]" slist => { @(fw.netumich) };

CFE_PS::

 "tcp[5308]" slist => { @(fw.netaglt2), @(fw.netpublic) };

any::

 "tcp_ports" slist => getindices("tcp");

 "udp_ports" slist => getindices("udp");

Cfengine file template for /etc/sysconfig/iptables:

[%CFEngine BEGIN %]

-A INPUT –d -s $(iptables.tcp_ports) $(iptables.tcp[$(iptables.tcp_ports)]) -j ACCEPT

[%CFEngine END %]

[%CFEngine BEGIN %]

-A INPUT –d -s $(iptables.udp_ports) $(iptables.udp[$(iptables.udp_ports)]) -j ACCEPT

[%CFEngine END %]

Examples - DNS
UM::

"mastersite" string => "msu",

comment => "Site to slave zones from (key in 'zones' array)";

"soa" string => "dns.local",

comment => "Zone SOA used in zone definition files";

MSU::

"mastersite" string => "um";

"soa" string => "msuinfo.msulocal";

DNS_SERVERS::

"serial" string => execresult("/bin/date +%Y%m%d%H%M", "noshell");

"zones[um]" slist => {

 "local",

 "1.1.10.in-addr.arpa",

 "0.10.10.in-addr.arpa“ };

Examples - DNS
files:

"/var/named/zones/$(zones[$(g.sitename)]).domain"

perms => mog("0640","root","named"),

classes => if_repaired("reload_named"),

copy_from =>

secure_cp("$(stash)/$(zones[$(g.sitename)]).domain","@(policy.server)");

"$(stage)/soa.include.domain.tmpl"

create => "true",

classes => if_repaired("reload_named"),

copy_from => secure_cp("$(stash)/soa.include.domain.tmpl","@(policy.server)");

"/var/named/zones/soa.include.domain"

create => "true",

perms => mog("0640","root","named"),

ifvarclass => "reload_named",

edit_template => "$(stage)/soa.include.domain.tmpl";

soa.include.domain.tmpl:
$TTL 3D

@ IN SOA $(named.soa). root.$(named.soa). ($(named.serial)

Blah, blah, NS, MX, etc

Other Managed Services

• Users/groups – we wrote a small shell script to merge a master copy of
passwd/group with local machine versions
• CFE 3.6 has a “user” datatype which we haven’t explored

• Yum repositories – cfengine policy sets up repos appropriate to system
type, populates baseurl with local and remote mirrors, and sets per-repo
excludes

• FusionInventory client installation (system inventory reporter).
• There really is no service we don’t eventually end up managing in

CFEngine.
• Our build system, Cobbler, does a very minimal installation before

handing it off to CFEngine on first boot. Don’t want 2 places to
manage.

Other Notes
• Earlier CFEngine versions (bf 3.4?) wouldn’t iterate associative arrays correctly

• Made the iptables example given impossible to work
• Has been fixed definitely in 3.5 (maybe 3.4?)

• In general CFEngine data containers can be non-intuitive to deal with
• Example: Policy => “free” allows appending to a list. But only if it’s

already defined. But don’t define it as empty or “cf_null” because you’ll
be surprised how literally those values are taken.

• Version 3.6 introduces a native JSON variable type. This should help the

situation considerably and open up many integration paths.

• Range is one example of an ENC that can be tied to CFEngine
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/

• Linkedin’s Redis tool was developed to provide visibility into system state

populated by CFEngine. See https://github.com/linkedin/sysops-api

http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
http://syslog.me/2013/11/18/external-node-classification-the-cfengine-way/
https://github.com/linkedin/sysops-api
https://github.com/linkedin/sysops-api
https://github.com/linkedin/sysops-api
https://github.com/linkedin/sysops-api

Questions?

Ask anytime – bmeekhof@umich.edu

