

The Adoption of Cloud Technology within the LHC Experiments

Laurence Field IT/SDC

17/10/2014

Cloud

High Level View

Areas

- Image Management
- Capacity Management
- Monitoring
- Accounting
- Pilot Job Framework
- Data Access and Networking
- Quota Management
- Supporting Services

Image Management

- Provides the job environment
 - Software
 - CVMFS
 - PilotJob
 - Configuration
 - Contextualization
- Balance pre- and post-instantiation operations
 - Simplicity, Complexity, Data Transfer, Frequency of Updates
- Transient
 - No updates of running machines
 - Destroy (gracefully) and create new instance

CernVM

- The OS via CVMFS
 - Replica via HTTP a reference file system
 - Stratum 0
- Why?
 - Because CVMFS is already a requirement
 - Removes the overhead of distributed image management
 - Manage version control centrally
- CernVM as a common requirement
 - Availability becomes and infrastructure issue
 - Recipe to contextualize
 - Responsibility of the VO
- The goal is to start a CernVM-based instance
 - Which needs minimal contextualization

Capacity Management

- Managing the VM life cycle isn't the focus
 - It is about ensuring the is enough resources (capacity)
- Requires a specific component with some intelligence
 - Do I need to start of VM and if so where?
 - Do I need to stop a VM and if so where?
 - Are the VMs that I started OK?
- Existing solutions focus on deploying applications in the cloud
 - Difference components, one cloud
 - May managed load balancing and failover
 - Is this a load balancing problem?
 - One configuration, many places, enough instances?
- Developing our own solutions
 - Site centric
 - The VAC model
 - VO centric

Monitoring

- Fabric management
 - The responsibility of the VO
 - Basic monitoring is required
- The objective is to triage the machines
 - Invoke a restart operation if it not ok
 - Detection of the not ok state maybe non-trivial
- Other metrics may be of interest
- Spotting dark resources
 - Deployed but not usable
- Can help to identify issues in other systems
 - Discovering inconsistent information through cross-checks
- A Common for all VOs
 - Pilot jobs monitoring in VO specific

Provider Accounting

- Helix Nebula
 - Pathfinder project
 - Development and exploitation
 - Cloud Computing Infrastructure
 - Divided into supply and demand
 - Three flagship applications
 - CERN (ATLAS simulation)
 - FMBI
 - ESA

FW: New Invoice!

- Can you please confirm that these are legit?
- Need to method to *record* usage to cross-check in Cesa
- Dark resources
 - Billed for x machines but not delivered (controllable)

Consumer-Side Accounting

- Monitor resource usage
 - Course granularity acceptable
 - No need to accurately measure
- What, where, when for resources
 - Basic infrastructure level
 - VM instances and whatever else is billed for
- Report generation
 - Mirror invoices
 - Use same metrics as charged for
- Needs a uniform approach
 - Should work for all VOs
 - Deliver same information to the budget holder

Cloud Accounting in WLCG

- Sites are the suppliers
 - Site accounting generates invoices
 - For resources used
- Need to monitor the resource usage
 - We trust sites and hence their invoices
 - Comparison can detect issues and inefficiencies
- Job activities in the domain of the VO
 - Measurement of work done
 - i.e. value for money
 - Information not included in cloud accounting
 - Need a common approach to provide information
 - Dashboard?

Comparison to Grid

- Grid accounting = supply side accounting
- No CE or batch system
 - Different information source
 - No per job information available
- Only concerned about resources used
 - Mainly time-based
 - For a flavour
 - A specific composition of CPU, memory, disk

Core Metrics

- Time
 - Billed by time per flavour
- Capacity
 - How many were used?
- Power
 - Performance will differ by flavour
 - And potentially over time
- Total computing done
 - power x capacity x time
- Efficiency
 - How much computing did something useful

Measuring Computing

- Resources provided by flavour
 - How can we compare?
- What benchmarking metrics?
 - And how we obtain them
- Flavour = SLA
- SLA monitoring
 - How do we do this?
- Rating sites
 - Against the SLA
 - Variance

Data Mining Approach

- VOs already have metrics on completed jobs
 - Can they be used to define relative performance?
- Avoids dicussion on bechmarking
 - And how the benchmark compares to the job
- May work for within the VO
 - But what about WLCG?
- Specification for procurement?
 - May not accept a VO specific metric
- Approach currently being investigated

The Other Areas

- Data access and networking
 - Have so far focus on non-data intensive workloads
- Quota Management
 - Currently have fixed limits
 - Leading the partitioning of resources between VOs
 - How can the sharing of resources be implemented?
- Supporting Services
 - What else is required?
 - Eg squid caches in the provider
 - How are these managed and by who?

Status of Adoption

Alice

- Will gradually increase adoption
- Using CERN's AI for release validation
 - Dynamic provisioning of an elastic virtual cluster
- Offline simulation jobs for the HLT farm
 - Set up as hypervisors for VMs
 - Suspend or even terminate when DAQ is required
 - Possibly will enable more I/O-intensive jobs
 - During LHC shutdown periods

Alice

- CERN Analysis Facility
 - Another cluster in CERN's Al
 - Allows elastic scaling
 - Disk space needs served directly by EOS
- Using CernVM via the WebAPI portal
 - An upcoming outreach activity
 - Extend as volunteer computing platform
 - ALICE@home to support simulation activities

ATLAS

- HLT Farm
 - Virtualization is used to ensure isolation
 - For tasks that require external network access
 - OpenStack is used to provide an laaS layer
- Distributed Computing
 - Existing Grid sites can also provide resource using their laaS
 - Cloud Scheduler used for capacity management
 - VAC is also used by some sites in the UK
 - Also experimenting with VCycle
 - VM instances are monitored Ganglia service
 - Repurpose for the consumer-side accounting

ATLAS@home

- Volunteer computing is supported by the BOINC
- Uses a pre-loaded CernVM image
- Run on the volunteer's machine using VirtualBox
- Job files injected via a share directory
- An ARC-CE used as a gateway interface
 - Between PanDA and the BOINC server
 - PandDA submits the job to the ARC-CE as normal
 - ARC-CE uses a specific BOINC backend plugin

ATLAS@home

Maximum: 4,288 , Minimum: 0.00 , Average: 1,165 , Current: 1,921

CMS

- HLT Farm
 - Focus of the majority of work with respect to the adoption of cloud
 - Overlaying laaS provisioning based on Openstack
 - Open vSwitch to virtualize the network
 - CMSoooooCloud
 - CMS Openstack, OpenSwitch-ed, Opportunistic, Overlay, Online-cluster Cloud
 - GlideinWMS v3 is used to manage the job submission
- CERN's Agile Infrastructure
 - Two different projects based at CERN and Wigner
 - Plan to consolidate the resources into just one Tier-0 resource
- Volunteer Computing
 - A prototype for CMS@home has recently been developed
 - Further development required for production

LHCb

- CernVM is used for the VM image
- Monitoring is done via Ganglia
- The pilot system used is the same as for bare-metal worker node execution
 - A pilot is injected into the VM via CVMFS
 - The DIRAC job agent is started
 - It contacts the central task queue
 - Retrieves a matching a payload for execution
- VAC for hypervisor only based sites
 - Used in production on several WLCG sites
 - Mainly T2 sites for simulation payloads
- VCycle for laaS controlled sites
 - Currently using the CERN AI
 - Planned to be expanded to more sites
- Developing a LHCb@home project using BOINC
- Not using virtualization on the HLT farm
 - Running offline workloads directly on the physical machines

Summary

- It is all about starting a CernVM image
 - And running a job agent
 - Similar to a pilot job
- Different options are being explored
 - To manage the VM life cycle
 - To deliver elastic capacity
- Already a great deal of commonality exists between the VOs
 - Should be exploited and built upon to provide common solutions
- How resources are going to be accounted?
 - Counting cores is easy
 - Normalizing for power is hard
- Investigating using job metrics
 - To discover relative performance
- Many open questions remain

