
Releasing the HTCondor-
CE into the Wild

Brian Bockelman
HEPiX Fall 2014 Workshop

Trouble in CE land?
• In 2012, the OSG Executive Team requested we do a risk analysis

of the components of the software stack. For each piece of
software,

• What is the health of the project? Is it actively being developed
& new features added?

• Who else uses the software?

• Does an equivalent piece of software exist?

• One finding was that OSG is unique in its use of GRAM at scale
and there was relatively few GRAM experts available.

• We were asked to investigate alternates.

Actions Considered
• Do nothing: It takes significant effort to switch

platforms; we could conclude that the disadvantages of
GRAM didn’t outweigh the costs.

• Adopt CREAM: Obvious advantages in synchronizing
with EGI.

• In retrospect, we failed examine a few other possible
gatekeepers closely enough (ARC, Unicore).

• Adopt HTCondor: Several features were coming online
to make this a viable alternative.

What does a gatekeeper
do?

• Remote access: Provide a network-exposed service that
remote clients can interact with.

• Authentication and authorization: Provides mechanism
whereby clients can be identified and mapped to
appropriate actions.

• Resource allocation: The gatekeeper accepts an abstract
description of a resource to allocate and actualizes the
resource request within the local environment.

• Note I tweak this definition to fit the “pilot-based” world
we live in.

Why HTCondor?
• Close working relationship between the OSG and HTCondor teams. We

already use HTCondor throughout OSG Software, so it was the only choice that
allowed us to reduce our number of external software providers.

• It’s software with a long, long track record. It’s 30th birthday was celebrated
this year. However, despite its age, it still has a vibrant development
community. Statistics from openhub.net:

http://openhub.net

HTCondor through the ages

1998

2014

Why HTCondor?
• HTCondor provided nearly all required gatekeeper functionality.

• We put the pieces together, but follow the rule that the
HTCondor-CE is just a special configuration of HTCondor.

• In parallel, OSG and HTCondor teams were already working on
another gatekeeper technology - BOSCO - that only requires
SSH access.

• HTCondor itself initiates the SSH connection and pipes
commands to the local batch system.

• The BOSCO wrapper helps with the staging of the HTCondor
executables and configuration details.

Introducing HTCondor-CE
• HTCondor-CE provides:

• Remote access: Based on the internal CEDAR protocol.

• Authentication and Authorization: Based on Globus
libraries for GSI and authorization callout.

• Resource allocation: Grid jobs are taken and
transformed to local jobs using the JobRouter component.

• Any software HTCondor can interact with is a potential
backend. This includes EC2, OpenStack, or even
another HTCondor-CE!

Tiny Details
• We use the condor_shared_port to simplify firewall configuration - the CE needs two

incoming ports (future versions will reduce this to one port).

• Submitters no longer need an open port!

• Scalability - original tests done in 2012; just started a new round of tests on the latest
HTCondor:

• Sustained submit rates are about 40% better than GRAM (about 1.4 jobs / s); peak
submit rates are about 5 jobs / s.

• Currently peaks at about 7K running jobs - we think this is an HTCondor configuration
issue and we should be fine up to 20K jobs / CE.

• We’re only about 3 days into the tests; more firm numbers will be presented at next
HEPiX.

• There is much more visibility into the internals of the system - unlike GRAM, we can do
“condor_ce_q” to see the grid jobs! All the other “condor_*” tools are still useful.

Example scale test run

Example only - final numbers will come later.

Routing Jobs

PBS Case

Condor-CE Schedd

PBS

Job Router Transform
CE Job

Routed Job (grid uni)

PBS Job

blahp-based transform

Submit Host

Condor Schedd

Job (grid universe)

Condor-C submit

Gratia Support
The Routed Job (in grey) knows the PBS job number (from the blahp),

and knows the proxy information (copied from the CE Job). When the PBS job
finishes, we delay processing it until the routed job finishes. When the routed

job finishes, Condor-CE schedd will place an ad in /var/lib/gratia/condor_ce_data.
In GratiaCore, we will join the PBS and routed job data together.

Special Case: HTCondor
site

HTCondor Case

HTCondor-CE Schedd

HTCondor Schedd

Job Router Transform

CE Job

HTCondor Job (vanilla)

Submit Host

HTCondor Schedd

Job (grid universe)

HTCondor-C submit

The Gory Details -
HTCondor site

The Job Router
• A key technology is the Job Router, which creates a copy of the

job and transform it according to a set of rules.

• Each set of rules, or route, is specified as a declarative ClassAd.

• Previously (GRAM), job transformations were specified in an
imperative language (perl). The Job Router includes an “hook”
which allows the sysadmin to specify a script in any language.

• NEW PHILOSOPHY: The pilot describes the resources it needs
and the site implementation details are hidden by the JobRouter.

• Sites have the option of exposing internal configurations, but
we’d like to encourage VOs to get to “site-independent pilot
submission” - only the endpoint name is different!

Example Route
JOB_ROUTER_ENTRIES = \
 [\
 GridResource = "batch pbs"; \
 TargetUniverse = 9; \
 name = "Local_PBS_cms"; \
 set_remote_queue = "cms"; \
 Requirements = target.x509UserProxyVOName =?= "cms"; \
] \
 [\
 GridResource = "batch pbs"; \
 TargetUniverse = 9; \
 name = "Local_PBS_other"; \
 set_remote_queue = "other"; \
 Requirements = target.x509UserProxyVOName =!= "cms"; \
]

More recipes available at:
https://twiki.grid.iu.edu/bin/view/Documentation/Release3/JobRouterRecipes

https://twiki.grid.iu.edu/bin/view/Documentation/Release3/JobRouterRecipes

No More Site Details!

• What we don’t want is the following route and the
instructions to the pilot factory of “please set CMS
analysis pilots to queue ‘cms’”.

JOB_ROUTER_ENTRIES = \
 [\
 GridResource = "batch pbs"; \
 TargetUniverse = 9; \
 name = "Local_PBS_cms"; \
]

Information Services
• For information services, we had two goals:

• No new software - again, just a special
configuration of HTCondor.

• Fundamentally rethink what information is
advertised - only provide the minimal
amount needed for provisioning.

• Don’t advertise 5 attributes if 4 would
do!

• We aim for a provisioning information system
- the only client is the pilot factory, not
accounting, not storage, not monitoring.

OSG Operations

HTCondor-CE

Collector A Collector B

Collector Schedd

UPDATE_SCHEDD_AD

Information Services
• Each daemon in HTCondor keeps an ad in the collector. This contains all the

pertinent information about the daemon in the system.

• We complement the HTCondor schedd ad (which is the core component of the
CE) with CE-specific information.

• The ad is then forwarded from the CE collector to the GOC, authenticated by GSI.

• Currently, the query tool is condor_status or the python bindings.

• First version of the information system is released today! Target was to only provide
enough information for a factory to find the CE.

• In fact, we’re considering banning querying by un-authenticated users to prevent
other use cases from developing.

• Second phase will allow sites to advertise relevant policies for custom pilots
(multicore, high-memory, VO-specific transforms, etc). Target is December 2014.

CE Deploy
• There are currently about 10-15 CEs deployed.

• WLCG sites are still waiting on SAMv3
improvements for to turn off GRAM.

• We hope to default all new installs to HTCondor-CE
in the next OSG release.

• The CE is already integrated with the accounting
system, monitoring system, etc - although
encountered a few bugs along the rollout.

Where are we going?
• Sandbox management - HTCondor has rudimentary support to limit the volume of file

transferred per job. We’re looking into how HTCondor might aggregate sandbox limits.

• Alternate security mechanisms - The CEDAR protocol allows the client/server to negotiate the
security protocol; this gives sites the freedom to use different mechanisms (kerberos, shared
password, etc).

• Cloud / VM provisioning - As the CE can route to any HTCondor backend, we believe this will
be one mechanism to wrap some “grid-like” mechanisms (auth, queueing) in front of EC2-like
resources.

• Complex policies - The sky is the limit! We are curious to see how sites will chain together
routes, multiple CEs, implement complex routing policies.

• Example: “overflow pilots to another cluster if the local cluster has been under-pledge for 24
hours”.

• Example: the Fermigrid load-balancing across several internal clusters.

• Monitoring - We’re looking to find reasonable “out of the box” monitoring that is not specific to
the CE - just HTCondor.

Lessons Learned
• After a decade of Globus GRAM, we significantly

underestimated how poor the OSG’s GRAM documentation was.

• Basically, sysadmins had memorized all the pieces and steps.

• This caused major trouble when we replaced GRAM with
HTCondor-CE but didn’t do major improvements to the docs.

• Even OSG’s support staff didn’t know what documentation they
needed — they had basically memorized all the GRAM failure
modes!

• Lessons learned: Documentation is key and the development
team often doesn’t know what is missing.

Lessons Learned
• JobRouter: Many sysadmins struggled with this component.

• While we firmly believe it’s a better model, changing from perl (imperative)
to ClassAds (declarative) for transforms is a huge mental change for the
admins.

• Debugging is tricky - you need to pull information from several log files,
logging lines may be missing.

• We gave this feedback to the HTCondor team and they have been working
hard to remove sharp lessons.

• Several of the changes help prevent silly configuration errors.

• LESSON: Almost none of these issues were predicted by the developers; get
the product in the hands of friendly testers ASAP. You need friends who are
willing to eat the dog food.

Lessons Learned
• BLAHP:

• blahp is used by HTCondor to talk to other batch systems.

• Shared component with CREAM, but we worry about
diverging use cases. Fundamentally, we don’t believe in
(only) tailing log files!

• The blahp component must cover a large diversity of site
configurations. Validation has been very slow outside PBS.

• Lesson learned: Even “common components” require care
and feeding. OSG needs to grow expertise in LSF and SGE.

Lessons Learned
• Collaborations:

• We had several meetings with our stakeholders about
requirements.

• However, several new required features were requested after the
initial releases.

• Lesson learned: Talk, talk, talk to your users. Unfortunately, the
users don’t know what features they need - and you probably aren’t
talking to the right users!

• Lesson learned: External dependencies can play havoc with the
release schedule, especially if there are systems managed by non-
stakeholders.

A vision of the future
• HTCondor-CE is just one of several technologies OSG is

investing in. However, it fits into an overall vision.

• OSG will provide an increasingly homogeneous
execution environment built from increasingly
heterogeneous resources.

• Homogeneous execution environment: software
distribution (CVMFS), remote data access (HTTP,
Xrootd), and job execution (PanDA, HTCondor).

• Heterogeneous resource acquisition: HTCondor-CE,
GRAM, SSH+local submit (BOSCO), EC2-like.

Questions?

