

CERN Cloud Infrastructure Report

Arne Wiebalck for the CERN Cloud Team

HEPiX Autumn Meeting Lincoln, Nebraska, U.S. Oct 17, 2014 **Numbers**

Operations

Issues

WIP

CERN Cloud Recap

- CERN Cloud Service one of the three major components in IT's AI project
 - Policy: Servers in CERN IT shall be virtual
- Based on OpenStack
 - Production service since July 2013
 - Performed two rolling upgrades since, now on "Icehouse"
 - Nova, Glance, Keystone, Horizon, Cinder, Ceilometer

CERN Cloud in Numbers (1)

- 3'000 hypervisors at the moment
 - Vast majority qemu/kvm on SLC6 (~100 Hyper-V hosts)
 - 550 HVs at Wigner in Hungary (so far only for the batch service)
 - 220 HVs on critical power (currently being deployed)
 - 2'000 HVs used by batch, rest shared by users, services, experiments
 - Additional 2'250 hypervisors will be added early 2015
- 8'000 VMs
 - Batch: 2'000
- 64k Cores
- 128 TB RAM

CERN Cloud in Numbers (2)

1'100 images/snapshots

- Backed by Ceph
- Finger trouble led to loss of 246 images (44 restored from caches)

600 volumes

- Backed by Ceph
- Increasingly popular with users: Space, Tunable IOPS, Attach/Detach

700 active projects

Personal and shared

Operations: Cells

Relying on "cell" feature

- Structures our deployment
- Needed for scale-out
- 7 cells, size range: 4 ... 1500 nodes
- Inter-cell consistency

Top level controllers

- Run multiple components
- Currently being split to allow for easier per-component scale-out and independent upgrades

H/W allocation non-trivial

- Shared vs. dedicated
- Physical location
- Critical power
- Hardware models: (10)GbE, SSDs, different generations ...

Operations: Updates

 Rolling upgrade to 'Icehouse' just finished!

- Patches needed to be ported, mostly for Nova
- Careful testing of each component, non-trivial e.g. for Nova
- Risk-management: Sequential, component-wise updates
- Service incidents
- Shift of priorities, e.g. allocation of new resources
- Juno on RDO RHEL6? Not planned at the moment ...
 - In touch with the community to see what can be done
 - CERN CentOS 7 in testing already

Operations: Consultancy

- "I cannot use virtual servers for my service."
 - Most worries around VM IO performance
 - Explain service offering, suggest tests, tune
 - See my talk on the "lxplus problem" later
- Requests for special flavors
 - Bigger disks, more RAM per core, a lot of RAM
 - Make VM packing a hard problem

"Users learn how to use the service while we learn how to run it."

- Requests for special services
 - Virtualization service vs Cloud service misunderstanding
 - Not everything that is technically doable should be done

Before we come to some issues ...

OpenStack is a solid cloud management product.

The CERN Cloud is a stable production service.

No VMs were harmed during any of the following incidents!

Issues: Rabbit

- Standard problem: unconsumed messages
 - Compute node stops acting
 - Watcher logic now in place
 - Has been improved with recent upgrades
- Incident spread over several days:
 - Problem on Hadoop cluster
 - Rabbit kept data in memory
 - Flushed to disk at some point
 - Filled up disks (but stopped "in time")
 - Something else filled the disk
 - Rabbit crashed, restart did not bring back queues
 - Restart of the whole service
 - Queues found corrupted, queues needed deletion
 - Restart of (all) OpenStack services eventually ...
- Messaging (so far) was a time-consuming component.

Issues: smartd vs. mdadm

- Symptom: VMs spend large fraction in IOwait
 - Hypervisor seemed more or less OK

CPU Utilization on an ATLAS PanDa VM during the incident

- Started during weekend ...
- Various VMs affected ...
- Not at the same hour ...
- Not on all machines ...
- Regular SMART tests introduced some days before! (spread out over the day)
- Mdadm scrubs starts by default on Sunday night at 1 am!
- Both at the same time plus multiple VMs on the HV break things ...

Issues: Unsolved so far ...

- Spontaneous VM shutdowns
 - For OpenStack, these look like normal shutdowns
- Unkillable libvirtd processes
 - In state 'R'
- qemu/kvm crashes of two-volume VMs
 - No usable dump yet
- ksmd creating high load
 - Long standing or new issue?
- •

WIP: External Authentication (1)

User requirements

- Secure way to authenticate (Kerberos, X.509)
- Enable federated use-cases (SSO)

Service requirements

- Only available on Keystone API v3
- Backwards compatible and transparent to end-users
 - Client only supports one API version in the Cloud

Community based

- Working actively on a solution
- Involves several projects (CLIs and services)

WIP: External Authentication (2)

- CERN Release planned for end of Oct 2014
 - Close to upcoming community solution

WIP: Cloud Federation 1

- Use several clouds with a federated identity
 - E.g.: combine resources of CERN IT's private cloud with experiments' clouds in the pit
 - Authentication done only against one IdP selected from a set

WIP: Cloud Federation 2

- OpenStack support for identity federation
 - Available with Icehouse
 - OpenStack Identity Service (Keystone) acts as a Service Provider mapping SAML assertions to roles
 - Support for SAML2 (OpenID and ABFAB to come)

Cloud federation status at CERN

- Collaboration with Rackspace
- Successfully tested with INFN's IdP
- CERN to join EduGAIN federation, providing cloud resources to other federation members

Outlook

- Native Web SSO support
- Inter cloud image sharing, Inter cloud SDNs

WIP: Orchestration with Heat (1)

- Heat provides a mechanism for orchestrating OpenStack resources through templates
 - Analogous to AWS cloud formation
- Auto-scaling feature is main plus

WIP: Heat HOT template example


```
cpu_alarm_high:
 type: OS::Ceilometer::Alarm
 properties:
   description: Scale-up if the average CPU > 50% for 1 minute
   meter_name: cpu_util
   statistic: avg
   period: 60
   evaluation periods: 1
   threshold: 50
   alarm actions:
    - {get_attr: [web_server_scaleup_policy, alarm_url]}
   matching metadata: {'metadata.user metadata.stack': {get param: "OS::stack id"}}
   comparison_operator: gt
web_server_scaleup_policy:
 type: OS::Heat::ScalingPolicy
 properties:
   adjustment_type: change_in_capacity
   auto_scaling_group_id: {get_resource: web_server_group}
   cooldown: 60
   scaling adjustment: 1
```


WIP: Orchestration with Heat (2)

Current Status

- Heat test environment connected to production infrastructure available only for Cloud team
- Missing features (auto-scaling, load balancers) due to identity constraints

Deployment Plan

 OpenStack Juno release will enable multiple identity drivers for different domains (LDAP, SQL)

Summary

- Cloud service at CERN still growing rapidly
 - +6'000 VMs in the past year
 - We will double the capacity in the next 6 months
- We're exploring options to address user expectations and requests
 - Performance of physical hardware is expected
 - Cloud-style of running services
- Clearly a learning process for users and operations team

Questions?

