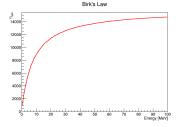
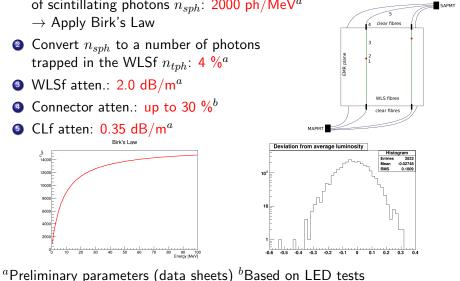
Electron Muon Ranger (EMR) Software Development

François Drielsma on behalf of the EMR Group

University of Geneva

June 25, 2014

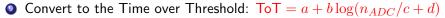


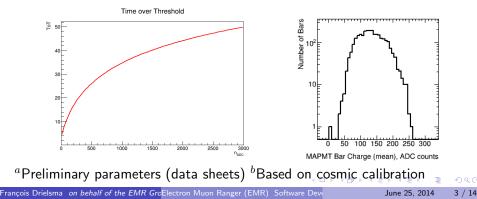


François Drielsma on behalf of the EMR GroElectron Muon Ranger (EMR) Software Deve

Digitization scheme: scintillation and transport

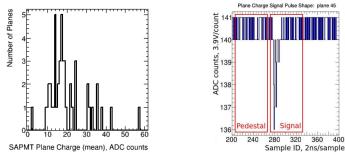
- Convert G4 energy deposition to a number of scintillating photons n_{sph} : 2000 ph/MeV^a \rightarrow Apply Birk's Law
- **2** Convert n_{sph} to a number of photons trapped in the WLSf n_{tph} : 4 %^a
- WLSf atten.: 2.0 dB/m^a
- Connector atten.: up to $30 \%^{b}$
- **Output** CLf atten: 0.35 dB/m^a




10

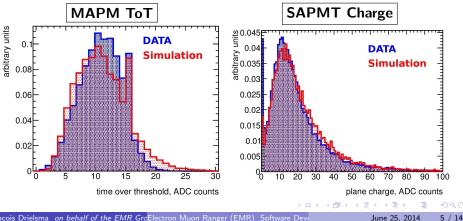
Digitization scheme: Multi-Anode PM

- Convert the number of absorbed photons n_{aph} to the number of photoelectrons n_{pe}: 20% QE^a
- **②** Correct for photocathode non-uniformity: up to $40\%^b$
- **③** Get ADC counts n_{ADC} : **8** ADC/npe^a

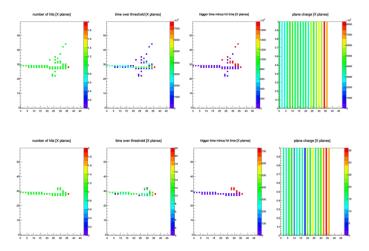

 ${f 0}$ Convert G4 time stamp to a time Δt in ADC counts: 2.5ns/ADC

Digitization scheme: Single-Anode PMT

- Convert the number of absorbed photons n_{aph} to the number of photoelectrons n_{pe} : 14.5% QE^a
- Orrect for photocathode non-uniformity: up to 50%^{ab}
- Get ADC counts n_{ADC} : 1 ADC/npe^a
- Set signal baseline: $\sim 130 \text{ ADC}^a$
- Imulate negative voltage pulse with random noise



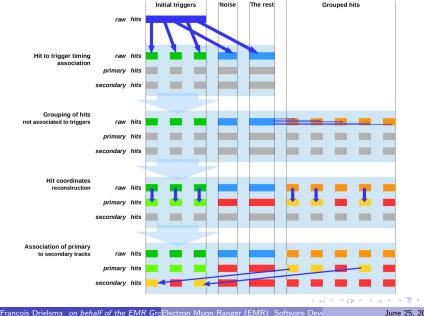
^aParameters will change with new SAPMTs ^bBased on cosmic calibration


Cosmics vs Digitized MC

- 4 GeV muons compared with Digitized MC
- The agreement with cosmic data is outstanding
- Peak around 10 and 15 ADC in ToT and 11 ADC in Charge
 - \rightarrow The second peak in ToT is due to the shaper of the MAROC

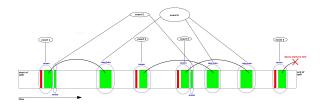
Francois Drielsma on behalf of the EMR GrcElectron Muon Ranger (EMR) Software Devi

Digitized Beam Event Display



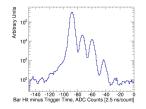
- The smallest energy depositions don't produce a signal
- The signals are converted using the calibration parameters
- Entirely integrated into MAUS (version 1.1)

François Drielsma on behalf of the EMR GroElectron Muon Ranger (EMR) Software Deve


June 25, 2014 6 / 14

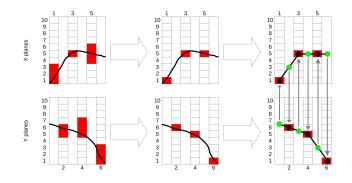
Reconstruction: Scheme

June 25, 2014 7 / 14


Reconstruction: Timing Association

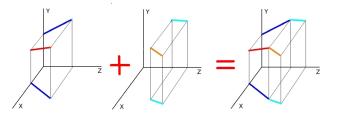
Timing cuts are used to sort the EMR hits in different categories:

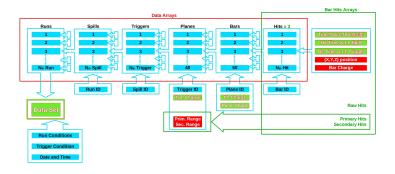
- primary particles (close to the trigger) are stored in separate EMR reconEvents (*Event 1*, 2, 3, 4);
- **noise** (close to the primary), in an additional reconEvent (*Event 5*);
- the rest, in one last reconEvent (*Event 6*), i.e.
 - decay products (e, µ);
 - cosmic muons.



Reconstruction: Hit Coordinates

Each particle track is assembled **piecewise** in each projection:


- for each X (resp. Y) plane, the bar with the highest amplitude is selected as the x (resp. y) coordinate of the track in that plane;
- the y (resp. x) coordinate is interpolated as the average y (resp. x) coordinate of the two surrounding Y (resp. X) planes.


Reconstruction: Track matching

- An end point of a decay must match the end point of the primary
- The presence of a secondary discriminates the muons from electrons
- Reconstructed Variables:
 - Presence of a secondary track
 - Range of the primary and secondary track (function of momentum)
 - Total charge in a track
 - Ratio of the last 1/5 of the track over the first 4/5 (> 1 for muons,

~ 1 for electrons), i.e.
$$R_Q = \frac{\sum_{i=0}^{n_1-1} Q_{pl}^i/(n_1-1)}{\sum_{i=n_1}^{n_2-n_1} Q_{pl}^i/(n_2-n_1)}$$

Reconstruction: EMR Data Structure

 \rightarrow Addition of **new variables** (range, presence of a secondary track, etc.) in the current data structure (EMREvent, EMRPlaneHit, EMRBarHit)

- \rightarrow Modification of the corresponding Data Processors
- \rightarrow Modification of the <code>reconEvent Processor Test</code>

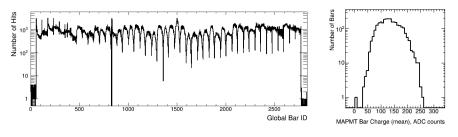
• • = • • = •

Integration in MAUS

What has been done:

- MC Digitization entirely in MAUS (version 1.1)
- Modication of the **data structure** implemented
- Data Processors, tests adapted

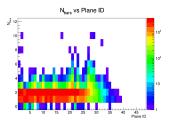
What needs to be done:


- Modification of the **EMRPlaneHits** map to accommodate two additional reconEvents (noise+decay particles) and fill them
- Integrate the reconstruction code (already exists)

 \rightarrow functional by the end of summer.

Additional Code

Additional programs exist in standalone and can improve precision:


- calibration uses cosmic data to evaluate the photomultipliers irregularities and give a parameter for each channel
 - ran in March 2014 and correction map included in MAUS
 - 300k (~ 1 k)cosmic tracks recorded in the EMR
 - Measurement of the mean charge for each bar i in a plane j, $\overline{Q_{ij}}$
 - Calculation of the correction factor $\epsilon_{ij} = \overline{Q_{ij}}/\overline{Q}$, with \overline{Q} global average
- correction uses these parameters to correct the data

Future prospects

Things will be done in the future to improve the existing code:

- Measurement of the digitization parameters on a test bench
- Calibrate the detector in energy using Monte Carlo simulation
- Improve reconstruction:
 - the coordinate in each plane as a weighted average of the position of the bars hit and their ToT measurements
 - include the triangular geometry in the range measurement
 - redefine the end point of the primary track using bar multiplicity
 - implement PID tag (e,μ,π) based on reconstructed variable using cut based analysis and multivariate analysis

• development of a new class EMRHist to represent triangular bars in the event displays based on ROOT's TH2Poly