



# Tracker Software Update

A. Dobbs, CM39,  $25^{\text{th}}$  June 2014



#### Contents

- Updates since last CM
- Monte Carlo and Geometry Status
- Online display ideas
- Emittance MC study results
- Single particle amplitude results
- To Do

 $\mathbf{2}$ 

# Updates

- New MAUS API now fully integrated with SciFi performance improvements (no more passing JSON strings between MAUS modules!)
- Data structure cross links now fully implemented useful for performing recon vs MC truth studies (see the Tracker Software: How To talk for more)
- Excellent MC truth emittance study results
- DAQ data now integrated fully into the Data structure (accessible in the output ROOT files)
- Tests expanded, integration tests now cover Kalman and Pattern Recognition seperately



# Online display ideas

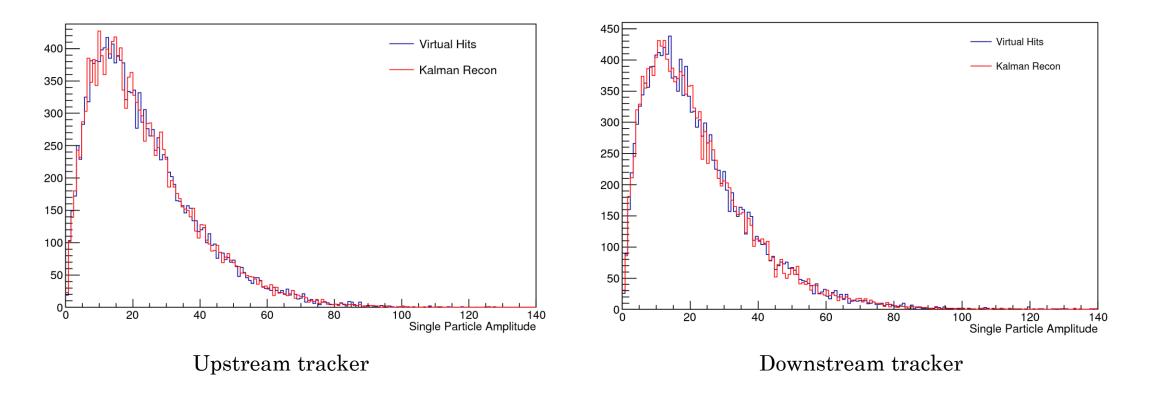
- Number of spacepoints per tracker station integrated over run and presented as a bar chart
- Channel-by-channel high gain RMS plot
- · Dead channels, in some easy to read form
- Saturated ADC channels flagged
- Number of digits per fibre plane and station
- Number of clusters per fibre plane and station
- Cluster maps with ADC threshold above a certain value
- Number of spacepoints, digits, clusters, and tracks per spill per tracker
- High gain vs low gain plots
- High gain ADC counts vs channel ID
- Some sort of simple event display on a per spill basis (simple event display already exists)



## Monte Carlo and Geometry Status

- Little change since the last CM
- Some ongoing issues with geometry implementation (moving from simply rotating the tracker volume is GEANT4 to placing each plan specifically for each tracker, bug fixing, He window placement...)
- Changes at MAUS level to how we deal with the GDML files
- ADC smearing still switched off provides a noise effect, without simulation may produce artificially good results. C. Heidt and D. Adey working on.




## Emittance MC study (C. Hunt)

| Parameter            | Virtual  | Reconstructed | Deviation |
|----------------------|----------|---------------|-----------|
| Emittance Upstream   | 5.808 mm | 5.805 mm      | -0.05%    |
| Emittance Downstream | 5.641 mm | 5.621 mm      | -0.35%    |
| Beta Upstream        | 356.1 mm | 353.8 mm      | -0.64%    |
| Beta DownStream      | 393.9 mm | 385.2 mm      | -2.2%     |
| Number Upstream      | 15590    | 15590         | 0.0%      |
| Number Downstream    | 15590    | 15590         | 0.0%      |

- Input beam: Gaussian,  $6\pi$  mm 4D emittance, 5 MeV  $p_z$  spread, origin just inside upstream solenoid
- Only tracks which are present in MC and reconstruction are used, derated focus coil, ignore decay events
- Code used is in trunk, and should be part of next MAUS release



### Single Particle Amplitude



**Excellent results**. Thanks to C. Hunt for the analysis. See his presentation to analysis group for details e.g. cuts: http://micewww.pp.rl.ac.uk/attachments/2189/step4\_emittanceRecon.pdf



### To Do

- Fix ADC smearing in the MC (Heidt, Adey)
- Sort out CDB geometry issues (Heidt, Bayes)
- Sort CDB calibration issues (Adey)
- Fix Kalman Fit for negative particles (Santos)
- Complete documentation (Dobbs, Santos)
- Create online monitoring plots (Uchida)
- \* Still waiting on Trigger MC badly needed for Pattern Recognition testing (Bayes)
- Finish spacepoint truth matching study (Hunt, Dobbs)
- Provide a goodness measure in the reconstruction tracks based on likelihood they are from low  $p_{\rm t}$  particle tracks (Dobbs)
- Redo emittance MC study with ADC smearing and noise on, using all tracks (Hunt)
- Write up as paper (Dobbs)



#### Questions



